Metamath Proof Explorer


Theorem sbcom3vv

Description: Substituting y for x and then z for y is equivalent to substituting z for both x and y . Version of sbcom3 with a disjoint variable condition using fewer axioms. (Contributed by NM, 27-May-1997) (Revised by Giovanni Mascellani, 8-Apr-2018) (Revised by BJ, 30-Dec-2020) (Proof shortened by Wolf Lammen, 19-Jan-2023)

Ref Expression
Assertion sbcom3vv
|- ( [ z / y ] [ y / x ] ph <-> [ z / y ] [ z / x ] ph )

Proof

Step Hyp Ref Expression
1 sbequ
 |-  ( y = z -> ( [ y / x ] ph <-> [ z / x ] ph ) )
2 1 pm5.74i
 |-  ( ( y = z -> [ y / x ] ph ) <-> ( y = z -> [ z / x ] ph ) )
3 2 albii
 |-  ( A. y ( y = z -> [ y / x ] ph ) <-> A. y ( y = z -> [ z / x ] ph ) )
4 sb6
 |-  ( [ z / y ] [ y / x ] ph <-> A. y ( y = z -> [ y / x ] ph ) )
5 sb6
 |-  ( [ z / y ] [ z / x ] ph <-> A. y ( y = z -> [ z / x ] ph ) )
6 3 4 5 3bitr4i
 |-  ( [ z / y ] [ y / x ] ph <-> [ z / y ] [ z / x ] ph )