Metamath Proof Explorer


Theorem sbievw2

Description: sbievw applied twice, avoiding a DV condition on x , y . Based on proofs by Wolf Lammen. (Contributed by Steven Nguyen, 29-Jul-2023)

Ref Expression
Hypotheses sbievw2.1
|- ( x = w -> ( ph <-> ch ) )
sbievw2.2
|- ( w = y -> ( ch <-> ps ) )
Assertion sbievw2
|- ( [ y / x ] ph <-> ps )

Proof

Step Hyp Ref Expression
1 sbievw2.1
 |-  ( x = w -> ( ph <-> ch ) )
2 sbievw2.2
 |-  ( w = y -> ( ch <-> ps ) )
3 sbcom3vv
 |-  ( [ y / w ] [ w / x ] ph <-> [ y / w ] [ y / x ] ph )
4 1 sbievw
 |-  ( [ w / x ] ph <-> ch )
5 4 sbbii
 |-  ( [ y / w ] [ w / x ] ph <-> [ y / w ] ch )
6 sbv
 |-  ( [ y / w ] [ y / x ] ph <-> [ y / x ] ph )
7 3 5 6 3bitr3i
 |-  ( [ y / w ] ch <-> [ y / x ] ph )
8 2 sbievw
 |-  ( [ y / w ] ch <-> ps )
9 7 8 bitr3i
 |-  ( [ y / x ] ph <-> ps )