Description: sbievw applied twice, avoiding a DV condition on x , y . Based on proofs by Wolf Lammen. (Contributed by Steven Nguyen, 29-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sbievw2.1 | |- ( x = w -> ( ph <-> ch ) ) |
|
sbievw2.2 | |- ( w = y -> ( ch <-> ps ) ) |
||
Assertion | sbievw2 | |- ( [ y / x ] ph <-> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbievw2.1 | |- ( x = w -> ( ph <-> ch ) ) |
|
2 | sbievw2.2 | |- ( w = y -> ( ch <-> ps ) ) |
|
3 | sbcom3vv | |- ( [ y / w ] [ w / x ] ph <-> [ y / w ] [ y / x ] ph ) |
|
4 | 1 | sbievw | |- ( [ w / x ] ph <-> ch ) |
5 | 4 | sbbii | |- ( [ y / w ] [ w / x ] ph <-> [ y / w ] ch ) |
6 | sbv | |- ( [ y / w ] [ y / x ] ph <-> [ y / x ] ph ) |
|
7 | 3 5 6 | 3bitr3i | |- ( [ y / w ] ch <-> [ y / x ] ph ) |
8 | 2 | sbievw | |- ( [ y / w ] ch <-> ps ) |
9 | 7 8 | bitr3i | |- ( [ y / x ] ph <-> ps ) |