Description: sbievw applied twice, avoiding a DV condition on x , y . Based on proofs by Wolf Lammen. (Contributed by Steven Nguyen, 29-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbievw2.1 | |- ( x = w -> ( ph <-> ch ) ) | |
| sbievw2.2 | |- ( w = y -> ( ch <-> ps ) ) | ||
| Assertion | sbievw2 | |- ( [ y / x ] ph <-> ps ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbievw2.1 | |- ( x = w -> ( ph <-> ch ) ) | |
| 2 | sbievw2.2 | |- ( w = y -> ( ch <-> ps ) ) | |
| 3 | sbcom3vv | |- ( [ y / w ] [ w / x ] ph <-> [ y / w ] [ y / x ] ph ) | |
| 4 | 1 | sbievw | |- ( [ w / x ] ph <-> ch ) | 
| 5 | 4 | sbbii | |- ( [ y / w ] [ w / x ] ph <-> [ y / w ] ch ) | 
| 6 | sbv | |- ( [ y / w ] [ y / x ] ph <-> [ y / x ] ph ) | |
| 7 | 3 5 6 | 3bitr3i | |- ( [ y / w ] ch <-> [ y / x ] ph ) | 
| 8 | 2 | sbievw | |- ( [ y / w ] ch <-> ps ) | 
| 9 | 7 8 | bitr3i | |- ( [ y / x ] ph <-> ps ) |