Metamath Proof Explorer


Theorem sbtALT

Description: Alternate proof of sbt , shorter but using ax-4 and ax-5 . (Contributed by NM, 21-Jan-2004) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis sbtALT.1
|- ph
Assertion sbtALT
|- [ y / x ] ph

Proof

Step Hyp Ref Expression
1 sbtALT.1
 |-  ph
2 stdpc4
 |-  ( A. x ph -> [ y / x ] ph )
3 2 1 mpg
 |-  [ y / x ] ph