| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatmat.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | scmatmat.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | scmatmat.s |  |-  S = ( N ScMat R ) | 
						
							| 4 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 5 |  | eqid |  |-  ( 1r ` A ) = ( 1r ` A ) | 
						
							| 6 |  | eqid |  |-  ( .s ` A ) = ( .s ` A ) | 
						
							| 7 | 4 1 2 5 6 3 | scmatel |  |-  ( ( N e. Fin /\ R e. V ) -> ( M e. S <-> ( M e. B /\ E. c e. ( Base ` R ) M = ( c ( .s ` A ) ( 1r ` A ) ) ) ) ) | 
						
							| 8 |  | simpl |  |-  ( ( M e. B /\ E. c e. ( Base ` R ) M = ( c ( .s ` A ) ( 1r ` A ) ) ) -> M e. B ) | 
						
							| 9 | 7 8 | biimtrdi |  |-  ( ( N e. Fin /\ R e. V ) -> ( M e. S -> M e. B ) ) |