Metamath Proof Explorer


Theorem scmatel

Description: An N x N scalar matrix over (a ring) R . (Contributed by AV, 18-Dec-2019)

Ref Expression
Hypotheses scmatval.k
|- K = ( Base ` R )
scmatval.a
|- A = ( N Mat R )
scmatval.b
|- B = ( Base ` A )
scmatval.1
|- .1. = ( 1r ` A )
scmatval.t
|- .x. = ( .s ` A )
scmatval.s
|- S = ( N ScMat R )
Assertion scmatel
|- ( ( N e. Fin /\ R e. V ) -> ( M e. S <-> ( M e. B /\ E. c e. K M = ( c .x. .1. ) ) ) )

Proof

Step Hyp Ref Expression
1 scmatval.k
 |-  K = ( Base ` R )
2 scmatval.a
 |-  A = ( N Mat R )
3 scmatval.b
 |-  B = ( Base ` A )
4 scmatval.1
 |-  .1. = ( 1r ` A )
5 scmatval.t
 |-  .x. = ( .s ` A )
6 scmatval.s
 |-  S = ( N ScMat R )
7 1 2 3 4 5 6 scmatval
 |-  ( ( N e. Fin /\ R e. V ) -> S = { m e. B | E. c e. K m = ( c .x. .1. ) } )
8 7 eleq2d
 |-  ( ( N e. Fin /\ R e. V ) -> ( M e. S <-> M e. { m e. B | E. c e. K m = ( c .x. .1. ) } ) )
9 eqeq1
 |-  ( m = M -> ( m = ( c .x. .1. ) <-> M = ( c .x. .1. ) ) )
10 9 rexbidv
 |-  ( m = M -> ( E. c e. K m = ( c .x. .1. ) <-> E. c e. K M = ( c .x. .1. ) ) )
11 10 elrab
 |-  ( M e. { m e. B | E. c e. K m = ( c .x. .1. ) } <-> ( M e. B /\ E. c e. K M = ( c .x. .1. ) ) )
12 8 11 bitrdi
 |-  ( ( N e. Fin /\ R e. V ) -> ( M e. S <-> ( M e. B /\ E. c e. K M = ( c .x. .1. ) ) ) )