| Step |
Hyp |
Ref |
Expression |
| 1 |
|
scmatval.k |
|- K = ( Base ` R ) |
| 2 |
|
scmatval.a |
|- A = ( N Mat R ) |
| 3 |
|
scmatval.b |
|- B = ( Base ` A ) |
| 4 |
|
scmatval.1 |
|- .1. = ( 1r ` A ) |
| 5 |
|
scmatval.t |
|- .x. = ( .s ` A ) |
| 6 |
|
scmatval.s |
|- S = ( N ScMat R ) |
| 7 |
1 2 3 4 5 6
|
scmatval |
|- ( ( N e. Fin /\ R e. V ) -> S = { m e. B | E. c e. K m = ( c .x. .1. ) } ) |
| 8 |
7
|
eleq2d |
|- ( ( N e. Fin /\ R e. V ) -> ( M e. S <-> M e. { m e. B | E. c e. K m = ( c .x. .1. ) } ) ) |
| 9 |
|
eqeq1 |
|- ( m = M -> ( m = ( c .x. .1. ) <-> M = ( c .x. .1. ) ) ) |
| 10 |
9
|
rexbidv |
|- ( m = M -> ( E. c e. K m = ( c .x. .1. ) <-> E. c e. K M = ( c .x. .1. ) ) ) |
| 11 |
10
|
elrab |
|- ( M e. { m e. B | E. c e. K m = ( c .x. .1. ) } <-> ( M e. B /\ E. c e. K M = ( c .x. .1. ) ) ) |
| 12 |
8 11
|
bitrdi |
|- ( ( N e. Fin /\ R e. V ) -> ( M e. S <-> ( M e. B /\ E. c e. K M = ( c .x. .1. ) ) ) ) |