| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatval.k |  |-  K = ( Base ` R ) | 
						
							| 2 |  | scmatval.a |  |-  A = ( N Mat R ) | 
						
							| 3 |  | scmatval.b |  |-  B = ( Base ` A ) | 
						
							| 4 |  | scmatval.1 |  |-  .1. = ( 1r ` A ) | 
						
							| 5 |  | scmatval.t |  |-  .x. = ( .s ` A ) | 
						
							| 6 |  | scmatval.s |  |-  S = ( N ScMat R ) | 
						
							| 7 | 1 2 3 4 5 6 | scmatval |  |-  ( ( N e. Fin /\ R e. V ) -> S = { m e. B | E. c e. K m = ( c .x. .1. ) } ) | 
						
							| 8 | 7 | eleq2d |  |-  ( ( N e. Fin /\ R e. V ) -> ( M e. S <-> M e. { m e. B | E. c e. K m = ( c .x. .1. ) } ) ) | 
						
							| 9 |  | eqeq1 |  |-  ( m = M -> ( m = ( c .x. .1. ) <-> M = ( c .x. .1. ) ) ) | 
						
							| 10 | 9 | rexbidv |  |-  ( m = M -> ( E. c e. K m = ( c .x. .1. ) <-> E. c e. K M = ( c .x. .1. ) ) ) | 
						
							| 11 | 10 | elrab |  |-  ( M e. { m e. B | E. c e. K m = ( c .x. .1. ) } <-> ( M e. B /\ E. c e. K M = ( c .x. .1. ) ) ) | 
						
							| 12 | 8 11 | bitrdi |  |-  ( ( N e. Fin /\ R e. V ) -> ( M e. S <-> ( M e. B /\ E. c e. K M = ( c .x. .1. ) ) ) ) |