| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatval.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | scmatval.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 3 |  | scmatval.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 4 |  | scmatval.1 | ⊢  1   =  ( 1r ‘ 𝐴 ) | 
						
							| 5 |  | scmatval.t | ⊢  ·   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 6 |  | scmatval.s | ⊢ 𝑆  =  ( 𝑁  ScMat  𝑅 ) | 
						
							| 7 | 1 2 3 4 5 6 | scmatval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  𝑆  =  { 𝑚  ∈  𝐵  ∣  ∃ 𝑐  ∈  𝐾 𝑚  =  ( 𝑐  ·   1  ) } ) | 
						
							| 8 | 7 | eleq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  ( 𝑀  ∈  𝑆  ↔  𝑀  ∈  { 𝑚  ∈  𝐵  ∣  ∃ 𝑐  ∈  𝐾 𝑚  =  ( 𝑐  ·   1  ) } ) ) | 
						
							| 9 |  | eqeq1 | ⊢ ( 𝑚  =  𝑀  →  ( 𝑚  =  ( 𝑐  ·   1  )  ↔  𝑀  =  ( 𝑐  ·   1  ) ) ) | 
						
							| 10 | 9 | rexbidv | ⊢ ( 𝑚  =  𝑀  →  ( ∃ 𝑐  ∈  𝐾 𝑚  =  ( 𝑐  ·   1  )  ↔  ∃ 𝑐  ∈  𝐾 𝑀  =  ( 𝑐  ·   1  ) ) ) | 
						
							| 11 | 10 | elrab | ⊢ ( 𝑀  ∈  { 𝑚  ∈  𝐵  ∣  ∃ 𝑐  ∈  𝐾 𝑚  =  ( 𝑐  ·   1  ) }  ↔  ( 𝑀  ∈  𝐵  ∧  ∃ 𝑐  ∈  𝐾 𝑀  =  ( 𝑐  ·   1  ) ) ) | 
						
							| 12 | 8 11 | bitrdi | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  ( 𝑀  ∈  𝑆  ↔  ( 𝑀  ∈  𝐵  ∧  ∃ 𝑐  ∈  𝐾 𝑀  =  ( 𝑐  ·   1  ) ) ) ) |