| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatval.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | scmatval.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 3 |  | scmatval.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 4 |  | scmatval.1 | ⊢  1   =  ( 1r ‘ 𝐴 ) | 
						
							| 5 |  | scmatval.t | ⊢  ·   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 6 |  | scmatval.s | ⊢ 𝑆  =  ( 𝑁  ScMat  𝑅 ) | 
						
							| 7 |  | df-scmat | ⊢  ScMat   =  ( 𝑛  ∈  Fin ,  𝑟  ∈  V  ↦  ⦋ ( 𝑛  Mat  𝑟 )  /  𝑎 ⦌ { 𝑚  ∈  ( Base ‘ 𝑎 )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑟 ) 𝑚  =  ( 𝑐 (  ·𝑠  ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) } ) | 
						
							| 8 | 7 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →   ScMat   =  ( 𝑛  ∈  Fin ,  𝑟  ∈  V  ↦  ⦋ ( 𝑛  Mat  𝑟 )  /  𝑎 ⦌ { 𝑚  ∈  ( Base ‘ 𝑎 )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑟 ) 𝑚  =  ( 𝑐 (  ·𝑠  ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) } ) ) | 
						
							| 9 |  | ovexd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  ∧  ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 ) )  →  ( 𝑛  Mat  𝑟 )  ∈  V ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑎  =  ( 𝑛  Mat  𝑟 )  →  ( Base ‘ 𝑎 )  =  ( Base ‘ ( 𝑛  Mat  𝑟 ) ) ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑎  =  ( 𝑛  Mat  𝑟 )  →  (  ·𝑠  ‘ 𝑎 )  =  (  ·𝑠  ‘ ( 𝑛  Mat  𝑟 ) ) ) | 
						
							| 12 |  | eqidd | ⊢ ( 𝑎  =  ( 𝑛  Mat  𝑟 )  →  𝑐  =  𝑐 ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑎  =  ( 𝑛  Mat  𝑟 )  →  ( 1r ‘ 𝑎 )  =  ( 1r ‘ ( 𝑛  Mat  𝑟 ) ) ) | 
						
							| 14 | 11 12 13 | oveq123d | ⊢ ( 𝑎  =  ( 𝑛  Mat  𝑟 )  →  ( 𝑐 (  ·𝑠  ‘ 𝑎 ) ( 1r ‘ 𝑎 ) )  =  ( 𝑐 (  ·𝑠  ‘ ( 𝑛  Mat  𝑟 ) ) ( 1r ‘ ( 𝑛  Mat  𝑟 ) ) ) ) | 
						
							| 15 | 14 | eqeq2d | ⊢ ( 𝑎  =  ( 𝑛  Mat  𝑟 )  →  ( 𝑚  =  ( 𝑐 (  ·𝑠  ‘ 𝑎 ) ( 1r ‘ 𝑎 ) )  ↔  𝑚  =  ( 𝑐 (  ·𝑠  ‘ ( 𝑛  Mat  𝑟 ) ) ( 1r ‘ ( 𝑛  Mat  𝑟 ) ) ) ) ) | 
						
							| 16 | 15 | rexbidv | ⊢ ( 𝑎  =  ( 𝑛  Mat  𝑟 )  →  ( ∃ 𝑐  ∈  ( Base ‘ 𝑟 ) 𝑚  =  ( 𝑐 (  ·𝑠  ‘ 𝑎 ) ( 1r ‘ 𝑎 ) )  ↔  ∃ 𝑐  ∈  ( Base ‘ 𝑟 ) 𝑚  =  ( 𝑐 (  ·𝑠  ‘ ( 𝑛  Mat  𝑟 ) ) ( 1r ‘ ( 𝑛  Mat  𝑟 ) ) ) ) ) | 
						
							| 17 | 10 16 | rabeqbidv | ⊢ ( 𝑎  =  ( 𝑛  Mat  𝑟 )  →  { 𝑚  ∈  ( Base ‘ 𝑎 )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑟 ) 𝑚  =  ( 𝑐 (  ·𝑠  ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) }  =  { 𝑚  ∈  ( Base ‘ ( 𝑛  Mat  𝑟 ) )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑟 ) 𝑚  =  ( 𝑐 (  ·𝑠  ‘ ( 𝑛  Mat  𝑟 ) ) ( 1r ‘ ( 𝑛  Mat  𝑟 ) ) ) } ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  ∧  ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 ) )  ∧  𝑎  =  ( 𝑛  Mat  𝑟 ) )  →  { 𝑚  ∈  ( Base ‘ 𝑎 )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑟 ) 𝑚  =  ( 𝑐 (  ·𝑠  ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) }  =  { 𝑚  ∈  ( Base ‘ ( 𝑛  Mat  𝑟 ) )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑟 ) 𝑚  =  ( 𝑐 (  ·𝑠  ‘ ( 𝑛  Mat  𝑟 ) ) ( 1r ‘ ( 𝑛  Mat  𝑟 ) ) ) } ) | 
						
							| 19 | 9 18 | csbied | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  ∧  ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 ) )  →  ⦋ ( 𝑛  Mat  𝑟 )  /  𝑎 ⦌ { 𝑚  ∈  ( Base ‘ 𝑎 )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑟 ) 𝑚  =  ( 𝑐 (  ·𝑠  ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) }  =  { 𝑚  ∈  ( Base ‘ ( 𝑛  Mat  𝑟 ) )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑟 ) 𝑚  =  ( 𝑐 (  ·𝑠  ‘ ( 𝑛  Mat  𝑟 ) ) ( 1r ‘ ( 𝑛  Mat  𝑟 ) ) ) } ) | 
						
							| 20 |  | oveq12 | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑛  Mat  𝑟 )  =  ( 𝑁  Mat  𝑅 ) ) | 
						
							| 21 | 20 | fveq2d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( Base ‘ ( 𝑛  Mat  𝑟 ) )  =  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 22 | 2 | fveq2i | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 23 | 3 22 | eqtri | ⊢ 𝐵  =  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 24 | 21 23 | eqtr4di | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( Base ‘ ( 𝑛  Mat  𝑟 ) )  =  𝐵 ) | 
						
							| 25 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( Base ‘ 𝑟 )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 26 | 25 1 | eqtr4di | ⊢ ( 𝑟  =  𝑅  →  ( Base ‘ 𝑟 )  =  𝐾 ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( Base ‘ 𝑟 )  =  𝐾 ) | 
						
							| 28 | 20 | fveq2d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  (  ·𝑠  ‘ ( 𝑛  Mat  𝑟 ) )  =  (  ·𝑠  ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 29 | 2 | fveq2i | ⊢ (  ·𝑠  ‘ 𝐴 )  =  (  ·𝑠  ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 30 | 5 29 | eqtri | ⊢  ·   =  (  ·𝑠  ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 31 | 28 30 | eqtr4di | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  (  ·𝑠  ‘ ( 𝑛  Mat  𝑟 ) )  =   ·  ) | 
						
							| 32 |  | eqidd | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  𝑐  =  𝑐 ) | 
						
							| 33 | 20 | fveq2d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 1r ‘ ( 𝑛  Mat  𝑟 ) )  =  ( 1r ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 34 | 2 | fveq2i | ⊢ ( 1r ‘ 𝐴 )  =  ( 1r ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 35 | 4 34 | eqtri | ⊢  1   =  ( 1r ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 36 | 33 35 | eqtr4di | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 1r ‘ ( 𝑛  Mat  𝑟 ) )  =   1  ) | 
						
							| 37 | 31 32 36 | oveq123d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑐 (  ·𝑠  ‘ ( 𝑛  Mat  𝑟 ) ) ( 1r ‘ ( 𝑛  Mat  𝑟 ) ) )  =  ( 𝑐  ·   1  ) ) | 
						
							| 38 | 37 | eqeq2d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑚  =  ( 𝑐 (  ·𝑠  ‘ ( 𝑛  Mat  𝑟 ) ) ( 1r ‘ ( 𝑛  Mat  𝑟 ) ) )  ↔  𝑚  =  ( 𝑐  ·   1  ) ) ) | 
						
							| 39 | 27 38 | rexeqbidv | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( ∃ 𝑐  ∈  ( Base ‘ 𝑟 ) 𝑚  =  ( 𝑐 (  ·𝑠  ‘ ( 𝑛  Mat  𝑟 ) ) ( 1r ‘ ( 𝑛  Mat  𝑟 ) ) )  ↔  ∃ 𝑐  ∈  𝐾 𝑚  =  ( 𝑐  ·   1  ) ) ) | 
						
							| 40 | 24 39 | rabeqbidv | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  { 𝑚  ∈  ( Base ‘ ( 𝑛  Mat  𝑟 ) )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑟 ) 𝑚  =  ( 𝑐 (  ·𝑠  ‘ ( 𝑛  Mat  𝑟 ) ) ( 1r ‘ ( 𝑛  Mat  𝑟 ) ) ) }  =  { 𝑚  ∈  𝐵  ∣  ∃ 𝑐  ∈  𝐾 𝑚  =  ( 𝑐  ·   1  ) } ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  ∧  ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 ) )  →  { 𝑚  ∈  ( Base ‘ ( 𝑛  Mat  𝑟 ) )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑟 ) 𝑚  =  ( 𝑐 (  ·𝑠  ‘ ( 𝑛  Mat  𝑟 ) ) ( 1r ‘ ( 𝑛  Mat  𝑟 ) ) ) }  =  { 𝑚  ∈  𝐵  ∣  ∃ 𝑐  ∈  𝐾 𝑚  =  ( 𝑐  ·   1  ) } ) | 
						
							| 42 | 19 41 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  ∧  ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 ) )  →  ⦋ ( 𝑛  Mat  𝑟 )  /  𝑎 ⦌ { 𝑚  ∈  ( Base ‘ 𝑎 )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑟 ) 𝑚  =  ( 𝑐 (  ·𝑠  ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) }  =  { 𝑚  ∈  𝐵  ∣  ∃ 𝑐  ∈  𝐾 𝑚  =  ( 𝑐  ·   1  ) } ) | 
						
							| 43 |  | simpl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  𝑁  ∈  Fin ) | 
						
							| 44 |  | elex | ⊢ ( 𝑅  ∈  𝑉  →  𝑅  ∈  V ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  𝑅  ∈  V ) | 
						
							| 46 | 3 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 47 | 46 | rabex | ⊢ { 𝑚  ∈  𝐵  ∣  ∃ 𝑐  ∈  𝐾 𝑚  =  ( 𝑐  ·   1  ) }  ∈  V | 
						
							| 48 | 47 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  { 𝑚  ∈  𝐵  ∣  ∃ 𝑐  ∈  𝐾 𝑚  =  ( 𝑐  ·   1  ) }  ∈  V ) | 
						
							| 49 | 8 42 43 45 48 | ovmpod | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  ( 𝑁  ScMat  𝑅 )  =  { 𝑚  ∈  𝐵  ∣  ∃ 𝑐  ∈  𝐾 𝑚  =  ( 𝑐  ·   1  ) } ) | 
						
							| 50 | 6 49 | eqtrid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  𝑆  =  { 𝑚  ∈  𝐵  ∣  ∃ 𝑐  ∈  𝐾 𝑚  =  ( 𝑐  ·   1  ) } ) |