Metamath Proof Explorer


Theorem scmatval

Description: The set of N x N scalar matrices over (a ring) R . (Contributed by AV, 18-Dec-2019)

Ref Expression
Hypotheses scmatval.k K=BaseR
scmatval.a A=NMatR
scmatval.b B=BaseA
scmatval.1 1˙=1A
scmatval.t ·˙=A
scmatval.s S=NScMatR
Assertion scmatval NFinRVS=mB|cKm=c·˙1˙

Proof

Step Hyp Ref Expression
1 scmatval.k K=BaseR
2 scmatval.a A=NMatR
3 scmatval.b B=BaseA
4 scmatval.1 1˙=1A
5 scmatval.t ·˙=A
6 scmatval.s S=NScMatR
7 df-scmat ScMat=nFin,rVnMatr/amBasea|cBaserm=ca1a
8 7 a1i NFinRVScMat=nFin,rVnMatr/amBasea|cBaserm=ca1a
9 ovexd NFinRVn=Nr=RnMatrV
10 fveq2 a=nMatrBasea=BasenMatr
11 fveq2 a=nMatra=nMatr
12 eqidd a=nMatrc=c
13 fveq2 a=nMatr1a=1nMatr
14 11 12 13 oveq123d a=nMatrca1a=cnMatr1nMatr
15 14 eqeq2d a=nMatrm=ca1am=cnMatr1nMatr
16 15 rexbidv a=nMatrcBaserm=ca1acBaserm=cnMatr1nMatr
17 10 16 rabeqbidv a=nMatrmBasea|cBaserm=ca1a=mBasenMatr|cBaserm=cnMatr1nMatr
18 17 adantl NFinRVn=Nr=Ra=nMatrmBasea|cBaserm=ca1a=mBasenMatr|cBaserm=cnMatr1nMatr
19 9 18 csbied NFinRVn=Nr=RnMatr/amBasea|cBaserm=ca1a=mBasenMatr|cBaserm=cnMatr1nMatr
20 oveq12 n=Nr=RnMatr=NMatR
21 20 fveq2d n=Nr=RBasenMatr=BaseNMatR
22 2 fveq2i BaseA=BaseNMatR
23 3 22 eqtri B=BaseNMatR
24 21 23 eqtr4di n=Nr=RBasenMatr=B
25 fveq2 r=RBaser=BaseR
26 25 1 eqtr4di r=RBaser=K
27 26 adantl n=Nr=RBaser=K
28 20 fveq2d n=Nr=RnMatr=NMatR
29 2 fveq2i A=NMatR
30 5 29 eqtri ·˙=NMatR
31 28 30 eqtr4di n=Nr=RnMatr=·˙
32 eqidd n=Nr=Rc=c
33 20 fveq2d n=Nr=R1nMatr=1NMatR
34 2 fveq2i 1A=1NMatR
35 4 34 eqtri 1˙=1NMatR
36 33 35 eqtr4di n=Nr=R1nMatr=1˙
37 31 32 36 oveq123d n=Nr=RcnMatr1nMatr=c·˙1˙
38 37 eqeq2d n=Nr=Rm=cnMatr1nMatrm=c·˙1˙
39 27 38 rexeqbidv n=Nr=RcBaserm=cnMatr1nMatrcKm=c·˙1˙
40 24 39 rabeqbidv n=Nr=RmBasenMatr|cBaserm=cnMatr1nMatr=mB|cKm=c·˙1˙
41 40 adantl NFinRVn=Nr=RmBasenMatr|cBaserm=cnMatr1nMatr=mB|cKm=c·˙1˙
42 19 41 eqtrd NFinRVn=Nr=RnMatr/amBasea|cBaserm=ca1a=mB|cKm=c·˙1˙
43 simpl NFinRVNFin
44 elex RVRV
45 44 adantl NFinRVRV
46 3 fvexi BV
47 46 rabex mB|cKm=c·˙1˙V
48 47 a1i NFinRVmB|cKm=c·˙1˙V
49 8 42 43 45 48 ovmpod NFinRVNScMatR=mB|cKm=c·˙1˙
50 6 49 eqtrid NFinRVS=mB|cKm=c·˙1˙