| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cscmat | ⊢  ScMat | 
						
							| 1 |  | vn | ⊢ 𝑛 | 
						
							| 2 |  | cfn | ⊢ Fin | 
						
							| 3 |  | vr | ⊢ 𝑟 | 
						
							| 4 |  | cvv | ⊢ V | 
						
							| 5 | 1 | cv | ⊢ 𝑛 | 
						
							| 6 |  | cmat | ⊢  Mat | 
						
							| 7 | 3 | cv | ⊢ 𝑟 | 
						
							| 8 | 5 7 6 | co | ⊢ ( 𝑛  Mat  𝑟 ) | 
						
							| 9 |  | va | ⊢ 𝑎 | 
						
							| 10 |  | vm | ⊢ 𝑚 | 
						
							| 11 |  | cbs | ⊢ Base | 
						
							| 12 | 9 | cv | ⊢ 𝑎 | 
						
							| 13 | 12 11 | cfv | ⊢ ( Base ‘ 𝑎 ) | 
						
							| 14 |  | vc | ⊢ 𝑐 | 
						
							| 15 | 7 11 | cfv | ⊢ ( Base ‘ 𝑟 ) | 
						
							| 16 | 10 | cv | ⊢ 𝑚 | 
						
							| 17 | 14 | cv | ⊢ 𝑐 | 
						
							| 18 |  | cvsca | ⊢  ·𝑠 | 
						
							| 19 | 12 18 | cfv | ⊢ (  ·𝑠  ‘ 𝑎 ) | 
						
							| 20 |  | cur | ⊢ 1r | 
						
							| 21 | 12 20 | cfv | ⊢ ( 1r ‘ 𝑎 ) | 
						
							| 22 | 17 21 19 | co | ⊢ ( 𝑐 (  ·𝑠  ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) | 
						
							| 23 | 16 22 | wceq | ⊢ 𝑚  =  ( 𝑐 (  ·𝑠  ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) | 
						
							| 24 | 23 14 15 | wrex | ⊢ ∃ 𝑐  ∈  ( Base ‘ 𝑟 ) 𝑚  =  ( 𝑐 (  ·𝑠  ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) | 
						
							| 25 | 24 10 13 | crab | ⊢ { 𝑚  ∈  ( Base ‘ 𝑎 )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑟 ) 𝑚  =  ( 𝑐 (  ·𝑠  ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) } | 
						
							| 26 | 9 8 25 | csb | ⊢ ⦋ ( 𝑛  Mat  𝑟 )  /  𝑎 ⦌ { 𝑚  ∈  ( Base ‘ 𝑎 )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑟 ) 𝑚  =  ( 𝑐 (  ·𝑠  ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) } | 
						
							| 27 | 1 3 2 4 26 | cmpo | ⊢ ( 𝑛  ∈  Fin ,  𝑟  ∈  V  ↦  ⦋ ( 𝑛  Mat  𝑟 )  /  𝑎 ⦌ { 𝑚  ∈  ( Base ‘ 𝑎 )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑟 ) 𝑚  =  ( 𝑐 (  ·𝑠  ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) } ) | 
						
							| 28 | 0 27 | wceq | ⊢  ScMat   =  ( 𝑛  ∈  Fin ,  𝑟  ∈  V  ↦  ⦋ ( 𝑛  Mat  𝑟 )  /  𝑎 ⦌ { 𝑚  ∈  ( Base ‘ 𝑎 )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑟 ) 𝑚  =  ( 𝑐 (  ·𝑠  ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) } ) |