| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cscmat |
⊢ ScMat |
| 1 |
|
vn |
⊢ 𝑛 |
| 2 |
|
cfn |
⊢ Fin |
| 3 |
|
vr |
⊢ 𝑟 |
| 4 |
|
cvv |
⊢ V |
| 5 |
1
|
cv |
⊢ 𝑛 |
| 6 |
|
cmat |
⊢ Mat |
| 7 |
3
|
cv |
⊢ 𝑟 |
| 8 |
5 7 6
|
co |
⊢ ( 𝑛 Mat 𝑟 ) |
| 9 |
|
va |
⊢ 𝑎 |
| 10 |
|
vm |
⊢ 𝑚 |
| 11 |
|
cbs |
⊢ Base |
| 12 |
9
|
cv |
⊢ 𝑎 |
| 13 |
12 11
|
cfv |
⊢ ( Base ‘ 𝑎 ) |
| 14 |
|
vc |
⊢ 𝑐 |
| 15 |
7 11
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
| 16 |
10
|
cv |
⊢ 𝑚 |
| 17 |
14
|
cv |
⊢ 𝑐 |
| 18 |
|
cvsca |
⊢ ·𝑠 |
| 19 |
12 18
|
cfv |
⊢ ( ·𝑠 ‘ 𝑎 ) |
| 20 |
|
cur |
⊢ 1r |
| 21 |
12 20
|
cfv |
⊢ ( 1r ‘ 𝑎 ) |
| 22 |
17 21 19
|
co |
⊢ ( 𝑐 ( ·𝑠 ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) |
| 23 |
16 22
|
wceq |
⊢ 𝑚 = ( 𝑐 ( ·𝑠 ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) |
| 24 |
23 14 15
|
wrex |
⊢ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠 ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) |
| 25 |
24 10 13
|
crab |
⊢ { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠 ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) } |
| 26 |
9 8 25
|
csb |
⊢ ⦋ ( 𝑛 Mat 𝑟 ) / 𝑎 ⦌ { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠 ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) } |
| 27 |
1 3 2 4 26
|
cmpo |
⊢ ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ⦋ ( 𝑛 Mat 𝑟 ) / 𝑎 ⦌ { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠 ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) } ) |
| 28 |
0 27
|
wceq |
⊢ ScMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ⦋ ( 𝑛 Mat 𝑟 ) / 𝑎 ⦌ { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠 ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) } ) |