| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cscmat |  |-  ScMat | 
						
							| 1 |  | vn |  |-  n | 
						
							| 2 |  | cfn |  |-  Fin | 
						
							| 3 |  | vr |  |-  r | 
						
							| 4 |  | cvv |  |-  _V | 
						
							| 5 | 1 | cv |  |-  n | 
						
							| 6 |  | cmat |  |-  Mat | 
						
							| 7 | 3 | cv |  |-  r | 
						
							| 8 | 5 7 6 | co |  |-  ( n Mat r ) | 
						
							| 9 |  | va |  |-  a | 
						
							| 10 |  | vm |  |-  m | 
						
							| 11 |  | cbs |  |-  Base | 
						
							| 12 | 9 | cv |  |-  a | 
						
							| 13 | 12 11 | cfv |  |-  ( Base ` a ) | 
						
							| 14 |  | vc |  |-  c | 
						
							| 15 | 7 11 | cfv |  |-  ( Base ` r ) | 
						
							| 16 | 10 | cv |  |-  m | 
						
							| 17 | 14 | cv |  |-  c | 
						
							| 18 |  | cvsca |  |-  .s | 
						
							| 19 | 12 18 | cfv |  |-  ( .s ` a ) | 
						
							| 20 |  | cur |  |-  1r | 
						
							| 21 | 12 20 | cfv |  |-  ( 1r ` a ) | 
						
							| 22 | 17 21 19 | co |  |-  ( c ( .s ` a ) ( 1r ` a ) ) | 
						
							| 23 | 16 22 | wceq |  |-  m = ( c ( .s ` a ) ( 1r ` a ) ) | 
						
							| 24 | 23 14 15 | wrex |  |-  E. c e. ( Base ` r ) m = ( c ( .s ` a ) ( 1r ` a ) ) | 
						
							| 25 | 24 10 13 | crab |  |-  { m e. ( Base ` a ) | E. c e. ( Base ` r ) m = ( c ( .s ` a ) ( 1r ` a ) ) } | 
						
							| 26 | 9 8 25 | csb |  |-  [_ ( n Mat r ) / a ]_ { m e. ( Base ` a ) | E. c e. ( Base ` r ) m = ( c ( .s ` a ) ( 1r ` a ) ) } | 
						
							| 27 | 1 3 2 4 26 | cmpo |  |-  ( n e. Fin , r e. _V |-> [_ ( n Mat r ) / a ]_ { m e. ( Base ` a ) | E. c e. ( Base ` r ) m = ( c ( .s ` a ) ( 1r ` a ) ) } ) | 
						
							| 28 | 0 27 | wceq |  |-  ScMat = ( n e. Fin , r e. _V |-> [_ ( n Mat r ) / a ]_ { m e. ( Base ` a ) | E. c e. ( Base ` r ) m = ( c ( .s ` a ) ( 1r ` a ) ) } ) |