Database BASIC LINEAR ALGEBRA Matrices The subalgebras of diagonal and scalar matrices scmatscmid  
				
		 
		
			
		 
		Description:   A scalar matrix can be expressed as a multiplication of a scalar with
       the identity matrix.  (Contributed by AV , 30-Oct-2019)   (Revised by AV , 18-Dec-2019) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						scmatval.k ⊢  𝐾   =  ( Base ‘ 𝑅  )  
					
						scmatval.a ⊢  𝐴   =  ( 𝑁   Mat  𝑅  )  
					
						scmatval.b ⊢  𝐵   =  ( Base ‘ 𝐴  )  
					
						scmatval.1 ⊢   1    =  ( 1r  ‘ 𝐴  )  
					
						scmatval.t ⊢   ·    =  (  · 𝑠   ‘ 𝐴  )  
					
						scmatval.s ⊢  𝑆   =  ( 𝑁   ScMat  𝑅  )  
				
					Assertion 
					scmatscmid ⊢   ( ( 𝑁   ∈  Fin  ∧  𝑅   ∈  𝑉   ∧  𝑀   ∈  𝑆  )  →  ∃ 𝑐   ∈  𝐾  𝑀   =  ( 𝑐   ·    1   ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							scmatval.k ⊢  𝐾   =  ( Base ‘ 𝑅  )  
						
							2 
								
							 
							scmatval.a ⊢  𝐴   =  ( 𝑁   Mat  𝑅  )  
						
							3 
								
							 
							scmatval.b ⊢  𝐵   =  ( Base ‘ 𝐴  )  
						
							4 
								
							 
							scmatval.1 ⊢   1    =  ( 1r  ‘ 𝐴  )  
						
							5 
								
							 
							scmatval.t ⊢   ·    =  (  · 𝑠   ‘ 𝐴  )  
						
							6 
								
							 
							scmatval.s ⊢  𝑆   =  ( 𝑁   ScMat  𝑅  )  
						
							7 
								1  2  3  4  5  6 
							 
							scmatel ⊢  ( ( 𝑁   ∈  Fin  ∧  𝑅   ∈  𝑉  )  →  ( 𝑀   ∈  𝑆   ↔  ( 𝑀   ∈  𝐵   ∧  ∃ 𝑐   ∈  𝐾  𝑀   =  ( 𝑐   ·    1   ) ) ) )  
						
							8 
								7 
							 
							simplbda ⊢  ( ( ( 𝑁   ∈  Fin  ∧  𝑅   ∈  𝑉  )  ∧  𝑀   ∈  𝑆  )  →  ∃ 𝑐   ∈  𝐾  𝑀   =  ( 𝑐   ·    1   ) )  
						
							9 
								8 
							 
							3impa ⊢  ( ( 𝑁   ∈  Fin  ∧  𝑅   ∈  𝑉   ∧  𝑀   ∈  𝑆  )  →  ∃ 𝑐   ∈  𝐾  𝑀   =  ( 𝑐   ·    1   ) )