Database BASIC LINEAR ALGEBRA Matrices The subalgebras of diagonal and scalar matrices scmatscmid  
				
		 
		
			
		 
		Description:   A scalar matrix can be expressed as a multiplication of a scalar with
       the identity matrix.  (Contributed by AV , 30-Oct-2019)   (Revised by AV , 18-Dec-2019) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						scmatval.k   ⊢   K  =  Base  R      
					 
					
						scmatval.a   ⊢   A  =  N   Mat   R      
					 
					
						scmatval.b   ⊢   B  =  Base  A      
					 
					
						scmatval.1   ⊢   1  ˙ =  1  A      
					 
					
						scmatval.t   ⊢   ·  ˙ =  ⋅  A      
					 
					
						scmatval.s   ⊢   S  =  N   ScMat   R      
					 
				
					Assertion 
					scmatscmid    ⊢    N  ∈  Fin    ∧   R  ∈  V    ∧   M  ∈  S     →   ∃  c  ∈  K   M  =  c  ·  ˙ 1  ˙          
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							scmatval.k  ⊢   K  =  Base  R      
						
							2 
								
							 
							scmatval.a  ⊢   A  =  N   Mat   R      
						
							3 
								
							 
							scmatval.b  ⊢   B  =  Base  A      
						
							4 
								
							 
							scmatval.1  ⊢   1  ˙ =  1  A      
						
							5 
								
							 
							scmatval.t  ⊢   ·  ˙ =  ⋅  A      
						
							6 
								
							 
							scmatval.s  ⊢   S  =  N   ScMat   R      
						
							7 
								1  2  3  4  5  6 
							 
							scmatel   ⊢    N  ∈  Fin    ∧   R  ∈  V     →    M  ∈  S    ↔    M  ∈  B    ∧   ∃  c  ∈  K   M  =  c  ·  ˙ 1  ˙            
						
							8 
								7 
							 
							simplbda   ⊢     N  ∈  Fin    ∧   R  ∈  V     ∧   M  ∈  S     →   ∃  c  ∈  K   M  =  c  ·  ˙ 1  ˙          
						
							9 
								8 
							 
							3impa   ⊢    N  ∈  Fin    ∧   R  ∈  V    ∧   M  ∈  S     →   ∃  c  ∈  K   M  =  c  ·  ˙ 1  ˙