Description: Strict dominance is irreflexive. Theorem 21(i) of Suppes p. 97. (Contributed by NM, 4-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sdomirr | |- -. A ~< A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomnen | |- ( A ~< A -> -. A ~~ A ) |
|
| 2 | enrefg | |- ( A e. _V -> A ~~ A ) |
|
| 3 | 1 2 | nsyl3 | |- ( A e. _V -> -. A ~< A ) |
| 4 | relsdom | |- Rel ~< |
|
| 5 | 4 | brrelex1i | |- ( A ~< A -> A e. _V ) |
| 6 | 5 | con3i | |- ( -. A e. _V -> -. A ~< A ) |
| 7 | 3 6 | pm2.61i | |- -. A ~< A |