Metamath Proof Explorer


Theorem seccl

Description: The closure of the secant function with a complex argument. (Contributed by David A. Wheeler, 14-Mar-2014)

Ref Expression
Assertion seccl
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( sec ` A ) e. CC )

Proof

Step Hyp Ref Expression
1 secval
 |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( sec ` A ) = ( 1 / ( cos ` A ) ) )
2 coscl
 |-  ( A e. CC -> ( cos ` A ) e. CC )
3 2 adantr
 |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` A ) e. CC )
4 simpr
 |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` A ) =/= 0 )
5 3 4 reccld
 |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( 1 / ( cos ` A ) ) e. CC )
6 1 5 eqeltrd
 |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( sec ` A ) e. CC )