Description: The closure of the cosecant function with a complex argument. (Contributed by David A. Wheeler, 14-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | csccl | |- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( csc ` A ) e. CC ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cscval | |- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( csc ` A ) = ( 1 / ( sin ` A ) ) ) |
|
2 | sincl | |- ( A e. CC -> ( sin ` A ) e. CC ) |
|
3 | 2 | adantr | |- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( sin ` A ) e. CC ) |
4 | simpr | |- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( sin ` A ) =/= 0 ) |
|
5 | 3 4 | reccld | |- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( 1 / ( sin ` A ) ) e. CC ) |
6 | 1 5 | eqeltrd | |- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( csc ` A ) e. CC ) |