Step |
Hyp |
Ref |
Expression |
1 |
|
cotval |
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( cot ` A ) = ( ( cos ` A ) / ( sin ` A ) ) ) |
2 |
|
coscl |
|- ( A e. CC -> ( cos ` A ) e. CC ) |
3 |
2
|
adantr |
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( cos ` A ) e. CC ) |
4 |
|
sincl |
|- ( A e. CC -> ( sin ` A ) e. CC ) |
5 |
4
|
adantr |
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( sin ` A ) e. CC ) |
6 |
|
simpr |
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( sin ` A ) =/= 0 ) |
7 |
3 5 6
|
divcld |
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( ( cos ` A ) / ( sin ` A ) ) e. CC ) |
8 |
1 7
|
eqeltrd |
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( cot ` A ) e. CC ) |