| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cotval |
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( cot ` A ) = ( ( cos ` A ) / ( sin ` A ) ) ) |
| 2 |
|
coscl |
|- ( A e. CC -> ( cos ` A ) e. CC ) |
| 3 |
2
|
adantr |
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( cos ` A ) e. CC ) |
| 4 |
|
sincl |
|- ( A e. CC -> ( sin ` A ) e. CC ) |
| 5 |
4
|
adantr |
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( sin ` A ) e. CC ) |
| 6 |
|
simpr |
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( sin ` A ) =/= 0 ) |
| 7 |
3 5 6
|
divcld |
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( ( cos ` A ) / ( sin ` A ) ) e. CC ) |
| 8 |
1 7
|
eqeltrd |
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( cot ` A ) e. CC ) |