| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cotval | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( cot ‘ 𝐴 )  =  ( ( cos ‘ 𝐴 )  /  ( sin ‘ 𝐴 ) ) ) | 
						
							| 2 |  | coscl | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( cos ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 4 |  | sincl | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( sin ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( sin ‘ 𝐴 )  ≠  0 ) | 
						
							| 7 | 3 5 6 | divcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( ( cos ‘ 𝐴 )  /  ( sin ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 8 | 1 7 | eqeltrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( cot ‘ 𝐴 )  ∈  ℂ ) |