Metamath Proof Explorer


Theorem cotcl

Description: The closure of the cotangent function with a complex argument. (Contributed by David A. Wheeler, 15-Mar-2014)

Ref Expression
Assertion cotcl ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( cot ‘ 𝐴 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 cotval ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( cot ‘ 𝐴 ) = ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) )
2 coscl ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ )
3 2 adantr ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( cos ‘ 𝐴 ) ∈ ℂ )
4 sincl ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ )
5 4 adantr ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( sin ‘ 𝐴 ) ∈ ℂ )
6 simpr ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( sin ‘ 𝐴 ) ≠ 0 )
7 3 5 6 divcld ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ∈ ℂ )
8 1 7 eqeltrd ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( cot ‘ 𝐴 ) ∈ ℂ )