| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( sin ‘ 𝑦 ) = ( sin ‘ 𝐴 ) ) |
| 2 |
1
|
neeq1d |
⊢ ( 𝑦 = 𝐴 → ( ( sin ‘ 𝑦 ) ≠ 0 ↔ ( sin ‘ 𝐴 ) ≠ 0 ) ) |
| 3 |
2
|
elrab |
⊢ ( 𝐴 ∈ { 𝑦 ∈ ℂ ∣ ( sin ‘ 𝑦 ) ≠ 0 } ↔ ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) ) |
| 4 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( cos ‘ 𝑥 ) = ( cos ‘ 𝐴 ) ) |
| 5 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( sin ‘ 𝑥 ) = ( sin ‘ 𝐴 ) ) |
| 6 |
4 5
|
oveq12d |
⊢ ( 𝑥 = 𝐴 → ( ( cos ‘ 𝑥 ) / ( sin ‘ 𝑥 ) ) = ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ) |
| 7 |
|
df-cot |
⊢ cot = ( 𝑥 ∈ { 𝑦 ∈ ℂ ∣ ( sin ‘ 𝑦 ) ≠ 0 } ↦ ( ( cos ‘ 𝑥 ) / ( sin ‘ 𝑥 ) ) ) |
| 8 |
|
ovex |
⊢ ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ∈ V |
| 9 |
6 7 8
|
fvmpt |
⊢ ( 𝐴 ∈ { 𝑦 ∈ ℂ ∣ ( sin ‘ 𝑦 ) ≠ 0 } → ( cot ‘ 𝐴 ) = ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ) |
| 10 |
3 9
|
sylbir |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( cot ‘ 𝐴 ) = ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ) |