Metamath Proof Explorer


Definition df-cot

Description: Define the cotangent function. We define it this way for cmpt , which requires the form ( x e. A |-> B ) . The cot function is defined in ISO 80000-2:2009(E) operation 2-13.5 and "NIST Digital Library of Mathematical Functions" section on "Trigonometric Functions" http://dlmf.nist.gov/4.14 . (Contributed by David A. Wheeler, 14-Mar-2014)

Ref Expression
Assertion df-cot cot = ( 𝑥 ∈ { 𝑦 ∈ ℂ ∣ ( sin ‘ 𝑦 ) ≠ 0 } ↦ ( ( cos ‘ 𝑥 ) / ( sin ‘ 𝑥 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccot cot
1 vx 𝑥
2 vy 𝑦
3 cc
4 csin sin
5 2 cv 𝑦
6 5 4 cfv ( sin ‘ 𝑦 )
7 cc0 0
8 6 7 wne ( sin ‘ 𝑦 ) ≠ 0
9 8 2 3 crab { 𝑦 ∈ ℂ ∣ ( sin ‘ 𝑦 ) ≠ 0 }
10 ccos cos
11 1 cv 𝑥
12 11 10 cfv ( cos ‘ 𝑥 )
13 cdiv /
14 11 4 cfv ( sin ‘ 𝑥 )
15 12 14 13 co ( ( cos ‘ 𝑥 ) / ( sin ‘ 𝑥 ) )
16 1 9 15 cmpt ( 𝑥 ∈ { 𝑦 ∈ ℂ ∣ ( sin ‘ 𝑦 ) ≠ 0 } ↦ ( ( cos ‘ 𝑥 ) / ( sin ‘ 𝑥 ) ) )
17 0 16 wceq cot = ( 𝑥 ∈ { 𝑦 ∈ ℂ ∣ ( sin ‘ 𝑦 ) ≠ 0 } ↦ ( ( cos ‘ 𝑥 ) / ( sin ‘ 𝑥 ) ) )