Metamath Proof Explorer


Definition df-cot

Description: Define the cotangent function. We define it this way for cmpt , which requires the form ( x e. A |-> B ) . The cot function is defined in ISO 80000-2:2009(E) operation 2-13.5 and "NIST Digital Library of Mathematical Functions" section on "Trigonometric Functions" http://dlmf.nist.gov/4.14 . (Contributed by David A. Wheeler, 14-Mar-2014)

Ref Expression
Assertion df-cot
|- cot = ( x e. { y e. CC | ( sin ` y ) =/= 0 } |-> ( ( cos ` x ) / ( sin ` x ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccot
 |-  cot
1 vx
 |-  x
2 vy
 |-  y
3 cc
 |-  CC
4 csin
 |-  sin
5 2 cv
 |-  y
6 5 4 cfv
 |-  ( sin ` y )
7 cc0
 |-  0
8 6 7 wne
 |-  ( sin ` y ) =/= 0
9 8 2 3 crab
 |-  { y e. CC | ( sin ` y ) =/= 0 }
10 ccos
 |-  cos
11 1 cv
 |-  x
12 11 10 cfv
 |-  ( cos ` x )
13 cdiv
 |-  /
14 11 4 cfv
 |-  ( sin ` x )
15 12 14 13 co
 |-  ( ( cos ` x ) / ( sin ` x ) )
16 1 9 15 cmpt
 |-  ( x e. { y e. CC | ( sin ` y ) =/= 0 } |-> ( ( cos ` x ) / ( sin ` x ) ) )
17 0 16 wceq
 |-  cot = ( x e. { y e. CC | ( sin ` y ) =/= 0 } |-> ( ( cos ` x ) / ( sin ` x ) ) )