Metamath Proof Explorer


Theorem secval

Description: Value of the secant function. (Contributed by David A. Wheeler, 14-Mar-2014)

Ref Expression
Assertion secval ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( sec ‘ 𝐴 ) = ( 1 / ( cos ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑦 = 𝐴 → ( cos ‘ 𝑦 ) = ( cos ‘ 𝐴 ) )
2 1 neeq1d ( 𝑦 = 𝐴 → ( ( cos ‘ 𝑦 ) ≠ 0 ↔ ( cos ‘ 𝐴 ) ≠ 0 ) )
3 2 elrab ( 𝐴 ∈ { 𝑦 ∈ ℂ ∣ ( cos ‘ 𝑦 ) ≠ 0 } ↔ ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) )
4 fveq2 ( 𝑥 = 𝐴 → ( cos ‘ 𝑥 ) = ( cos ‘ 𝐴 ) )
5 4 oveq2d ( 𝑥 = 𝐴 → ( 1 / ( cos ‘ 𝑥 ) ) = ( 1 / ( cos ‘ 𝐴 ) ) )
6 df-sec sec = ( 𝑥 ∈ { 𝑦 ∈ ℂ ∣ ( cos ‘ 𝑦 ) ≠ 0 } ↦ ( 1 / ( cos ‘ 𝑥 ) ) )
7 ovex ( 1 / ( cos ‘ 𝐴 ) ) ∈ V
8 5 6 7 fvmpt ( 𝐴 ∈ { 𝑦 ∈ ℂ ∣ ( cos ‘ 𝑦 ) ≠ 0 } → ( sec ‘ 𝐴 ) = ( 1 / ( cos ‘ 𝐴 ) ) )
9 3 8 sylbir ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( sec ‘ 𝐴 ) = ( 1 / ( cos ‘ 𝐴 ) ) )