| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( cos ‘ 𝑦 ) = ( cos ‘ 𝐴 ) ) |
| 2 |
1
|
neeq1d |
⊢ ( 𝑦 = 𝐴 → ( ( cos ‘ 𝑦 ) ≠ 0 ↔ ( cos ‘ 𝐴 ) ≠ 0 ) ) |
| 3 |
2
|
elrab |
⊢ ( 𝐴 ∈ { 𝑦 ∈ ℂ ∣ ( cos ‘ 𝑦 ) ≠ 0 } ↔ ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) ) |
| 4 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( cos ‘ 𝑥 ) = ( cos ‘ 𝐴 ) ) |
| 5 |
4
|
oveq2d |
⊢ ( 𝑥 = 𝐴 → ( 1 / ( cos ‘ 𝑥 ) ) = ( 1 / ( cos ‘ 𝐴 ) ) ) |
| 6 |
|
df-sec |
⊢ sec = ( 𝑥 ∈ { 𝑦 ∈ ℂ ∣ ( cos ‘ 𝑦 ) ≠ 0 } ↦ ( 1 / ( cos ‘ 𝑥 ) ) ) |
| 7 |
|
ovex |
⊢ ( 1 / ( cos ‘ 𝐴 ) ) ∈ V |
| 8 |
5 6 7
|
fvmpt |
⊢ ( 𝐴 ∈ { 𝑦 ∈ ℂ ∣ ( cos ‘ 𝑦 ) ≠ 0 } → ( sec ‘ 𝐴 ) = ( 1 / ( cos ‘ 𝐴 ) ) ) |
| 9 |
3 8
|
sylbir |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( sec ‘ 𝐴 ) = ( 1 / ( cos ‘ 𝐴 ) ) ) |