Metamath Proof Explorer


Theorem cscval

Description: Value of the cosecant function. (Contributed by David A. Wheeler, 14-Mar-2014)

Ref Expression
Assertion cscval ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( csc ‘ 𝐴 ) = ( 1 / ( sin ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑦 = 𝐴 → ( sin ‘ 𝑦 ) = ( sin ‘ 𝐴 ) )
2 1 neeq1d ( 𝑦 = 𝐴 → ( ( sin ‘ 𝑦 ) ≠ 0 ↔ ( sin ‘ 𝐴 ) ≠ 0 ) )
3 2 elrab ( 𝐴 ∈ { 𝑦 ∈ ℂ ∣ ( sin ‘ 𝑦 ) ≠ 0 } ↔ ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) )
4 fveq2 ( 𝑥 = 𝐴 → ( sin ‘ 𝑥 ) = ( sin ‘ 𝐴 ) )
5 4 oveq2d ( 𝑥 = 𝐴 → ( 1 / ( sin ‘ 𝑥 ) ) = ( 1 / ( sin ‘ 𝐴 ) ) )
6 df-csc csc = ( 𝑥 ∈ { 𝑦 ∈ ℂ ∣ ( sin ‘ 𝑦 ) ≠ 0 } ↦ ( 1 / ( sin ‘ 𝑥 ) ) )
7 ovex ( 1 / ( sin ‘ 𝐴 ) ) ∈ V
8 5 6 7 fvmpt ( 𝐴 ∈ { 𝑦 ∈ ℂ ∣ ( sin ‘ 𝑦 ) ≠ 0 } → ( csc ‘ 𝐴 ) = ( 1 / ( sin ‘ 𝐴 ) ) )
9 3 8 sylbir ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( csc ‘ 𝐴 ) = ( 1 / ( sin ‘ 𝐴 ) ) )