Metamath Proof Explorer


Theorem cscval

Description: Value of the cosecant function. (Contributed by David A. Wheeler, 14-Mar-2014)

Ref Expression
Assertion cscval AsinA0cscA=1sinA

Proof

Step Hyp Ref Expression
1 fveq2 y=Asiny=sinA
2 1 neeq1d y=Asiny0sinA0
3 2 elrab Ay|siny0AsinA0
4 fveq2 x=Asinx=sinA
5 4 oveq2d x=A1sinx=1sinA
6 df-csc csc=xy|siny01sinx
7 ovex 1sinAV
8 5 6 7 fvmpt Ay|siny0cscA=1sinA
9 3 8 sylbir AsinA0cscA=1sinA