Metamath Proof Explorer


Definition df-csc

Description: Define the cosecant function. We define it this way for cmpt , which requires the form ( x e. A |-> B ) . The csc function is defined in ISO 80000-2:2009(E) operation 2-13.7 and "NIST Digital Library of Mathematical Functions" section on "Trigonometric Functions" http://dlmf.nist.gov/4.14 . (Contributed by David A. Wheeler, 14-Mar-2014)

Ref Expression
Assertion df-csc csc = x y | sin y 0 1 sin x

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccsc class csc
1 vx setvar x
2 vy setvar y
3 cc class
4 csin class sin
5 2 cv setvar y
6 5 4 cfv class sin y
7 cc0 class 0
8 6 7 wne wff sin y 0
9 8 2 3 crab class y | sin y 0
10 c1 class 1
11 cdiv class ÷
12 1 cv setvar x
13 12 4 cfv class sin x
14 10 13 11 co class 1 sin x
15 1 9 14 cmpt class x y | sin y 0 1 sin x
16 0 15 wceq wff csc = x y | sin y 0 1 sin x