Metamath Proof Explorer


Theorem cscval

Description: Value of the cosecant function. (Contributed by David A. Wheeler, 14-Mar-2014)

Ref Expression
Assertion cscval
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( csc ` A ) = ( 1 / ( sin ` A ) ) )

Proof

Step Hyp Ref Expression
1 fveq2
 |-  ( y = A -> ( sin ` y ) = ( sin ` A ) )
2 1 neeq1d
 |-  ( y = A -> ( ( sin ` y ) =/= 0 <-> ( sin ` A ) =/= 0 ) )
3 2 elrab
 |-  ( A e. { y e. CC | ( sin ` y ) =/= 0 } <-> ( A e. CC /\ ( sin ` A ) =/= 0 ) )
4 fveq2
 |-  ( x = A -> ( sin ` x ) = ( sin ` A ) )
5 4 oveq2d
 |-  ( x = A -> ( 1 / ( sin ` x ) ) = ( 1 / ( sin ` A ) ) )
6 df-csc
 |-  csc = ( x e. { y e. CC | ( sin ` y ) =/= 0 } |-> ( 1 / ( sin ` x ) ) )
7 ovex
 |-  ( 1 / ( sin ` A ) ) e. _V
8 5 6 7 fvmpt
 |-  ( A e. { y e. CC | ( sin ` y ) =/= 0 } -> ( csc ` A ) = ( 1 / ( sin ` A ) ) )
9 3 8 sylbir
 |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( csc ` A ) = ( 1 / ( sin ` A ) ) )