Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( y = A -> ( sin ` y ) = ( sin ` A ) ) |
2 |
1
|
neeq1d |
|- ( y = A -> ( ( sin ` y ) =/= 0 <-> ( sin ` A ) =/= 0 ) ) |
3 |
2
|
elrab |
|- ( A e. { y e. CC | ( sin ` y ) =/= 0 } <-> ( A e. CC /\ ( sin ` A ) =/= 0 ) ) |
4 |
|
fveq2 |
|- ( x = A -> ( cos ` x ) = ( cos ` A ) ) |
5 |
|
fveq2 |
|- ( x = A -> ( sin ` x ) = ( sin ` A ) ) |
6 |
4 5
|
oveq12d |
|- ( x = A -> ( ( cos ` x ) / ( sin ` x ) ) = ( ( cos ` A ) / ( sin ` A ) ) ) |
7 |
|
df-cot |
|- cot = ( x e. { y e. CC | ( sin ` y ) =/= 0 } |-> ( ( cos ` x ) / ( sin ` x ) ) ) |
8 |
|
ovex |
|- ( ( cos ` A ) / ( sin ` A ) ) e. _V |
9 |
6 7 8
|
fvmpt |
|- ( A e. { y e. CC | ( sin ` y ) =/= 0 } -> ( cot ` A ) = ( ( cos ` A ) / ( sin ` A ) ) ) |
10 |
3 9
|
sylbir |
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( cot ` A ) = ( ( cos ` A ) / ( sin ` A ) ) ) |