Metamath Proof Explorer


Theorem cotcl

Description: The closure of the cotangent function with a complex argument. (Contributed by David A. Wheeler, 15-Mar-2014)

Ref Expression
Assertion cotcl A sin A 0 cot A

Proof

Step Hyp Ref Expression
1 cotval A sin A 0 cot A = cos A sin A
2 coscl A cos A
3 2 adantr A sin A 0 cos A
4 sincl A sin A
5 4 adantr A sin A 0 sin A
6 simpr A sin A 0 sin A 0
7 3 5 6 divcld A sin A 0 cos A sin A
8 1 7 eqeltrd A sin A 0 cot A