Metamath Proof Explorer


Theorem reseccl

Description: The closure of the secant function with a real argument. (Contributed by David A. Wheeler, 15-Mar-2014)

Ref Expression
Assertion reseccl A cos A 0 sec A

Proof

Step Hyp Ref Expression
1 recn A A
2 secval A cos A 0 sec A = 1 cos A
3 1 2 sylan A cos A 0 sec A = 1 cos A
4 recoscl A cos A
5 1red A 1
6 redivcl 1 cos A cos A 0 1 cos A
7 5 6 syl3an1 A cos A cos A 0 1 cos A
8 4 7 syl3an2 A A cos A 0 1 cos A
9 8 3anidm12 A cos A 0 1 cos A
10 3 9 eqeltrd A cos A 0 sec A