Metamath Proof Explorer


Theorem csccl

Description: The closure of the cosecant function with a complex argument. (Contributed by David A. Wheeler, 14-Mar-2014)

Ref Expression
Assertion csccl ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( csc ‘ 𝐴 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 cscval ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( csc ‘ 𝐴 ) = ( 1 / ( sin ‘ 𝐴 ) ) )
2 sincl ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ )
3 2 adantr ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( sin ‘ 𝐴 ) ∈ ℂ )
4 simpr ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( sin ‘ 𝐴 ) ≠ 0 )
5 3 4 reccld ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( 1 / ( sin ‘ 𝐴 ) ) ∈ ℂ )
6 1 5 eqeltrd ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( csc ‘ 𝐴 ) ∈ ℂ )