Metamath Proof Explorer


Theorem csccl

Description: The closure of the cosecant function with a complex argument. (Contributed by David A. Wheeler, 14-Mar-2014)

Ref Expression
Assertion csccl A sin A 0 csc A

Proof

Step Hyp Ref Expression
1 cscval A sin A 0 csc A = 1 sin A
2 sincl A sin A
3 2 adantr A sin A 0 sin A
4 simpr A sin A 0 sin A 0
5 3 4 reccld A sin A 0 1 sin A
6 1 5 eqeltrd A sin A 0 csc A