Metamath Proof Explorer


Theorem sepexi

Description: Convert implication to equivalence within an existence statement using the Separation Scheme (Aussonderung) ax-sep . Inference associated with sepex . (Contributed by NM, 21-Jun-1993) Generalize conclusion, extract closed form, and avoid ax-9 . (Revised by Matthew House, 19-Sep-2025)

Ref Expression
Hypothesis sepexi.1
|- E. y A. x ( ph -> x e. y )
Assertion sepexi
|- E. z A. x ( x e. z <-> ph )

Proof

Step Hyp Ref Expression
1 sepexi.1
 |-  E. y A. x ( ph -> x e. y )
2 sepex
 |-  ( E. y A. x ( ph -> x e. y ) -> E. z A. x ( x e. z <-> ph ) )
3 1 2 ax-mp
 |-  E. z A. x ( x e. z <-> ph )