Metamath Proof Explorer


Theorem serclim0

Description: The zero series converges to zero. (Contributed by Paul Chapman, 9-Feb-2008) (Proof shortened by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion serclim0
|- ( M e. ZZ -> seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ~~> 0 )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( ZZ>= ` M ) = ( ZZ>= ` M )
2 1 ser0f
 |-  ( M e. ZZ -> seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) = ( ( ZZ>= ` M ) X. { 0 } ) )
3 0cn
 |-  0 e. CC
4 ssid
 |-  ( ZZ>= ` M ) C_ ( ZZ>= ` M )
5 fvex
 |-  ( ZZ>= ` M ) e. _V
6 4 5 climconst2
 |-  ( ( 0 e. CC /\ M e. ZZ ) -> ( ( ZZ>= ` M ) X. { 0 } ) ~~> 0 )
7 3 6 mpan
 |-  ( M e. ZZ -> ( ( ZZ>= ` M ) X. { 0 } ) ~~> 0 )
8 2 7 eqbrtrd
 |-  ( M e. ZZ -> seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ~~> 0 )