Metamath Proof Explorer


Theorem setinds2regs

Description: Principle of set induction (or _E -induction). If a property passes from all elements of x to x itself, then it holds for all x . (Contributed by BTernaryTau, 31-Dec-2025)

Ref Expression
Hypotheses setinds2regs.1
|- ( x = y -> ( ph <-> ps ) )
setinds2regs.2
|- ( A. y e. x ps -> ph )
Assertion setinds2regs
|- ph

Proof

Step Hyp Ref Expression
1 setinds2regs.1
 |-  ( x = y -> ( ph <-> ps ) )
2 setinds2regs.2
 |-  ( A. y e. x ps -> ph )
3 vex
 |-  x e. _V
4 1 cbvabv
 |-  { x | ph } = { y | ps }
5 setindregs
 |-  ( A. x ( x C_ { y | ps } -> x e. { y | ps } ) -> { y | ps } = _V )
6 ssabral
 |-  ( x C_ { y | ps } <-> A. y e. x ps )
7 6 2 sylbi
 |-  ( x C_ { y | ps } -> ph )
8 4 eqabcri
 |-  ( ph <-> x e. { y | ps } )
9 7 8 sylib
 |-  ( x C_ { y | ps } -> x e. { y | ps } )
10 5 9 mpg
 |-  { y | ps } = _V
11 4 10 eqtri
 |-  { x | ph } = _V
12 11 eqabcri
 |-  ( ph <-> x e. _V )
13 3 12 mpbir
 |-  ph