| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setinds2regs.1 |
|- ( x = y -> ( ph <-> ps ) ) |
| 2 |
|
setinds2regs.2 |
|- ( A. y e. x ps -> ph ) |
| 3 |
|
vex |
|- x e. _V |
| 4 |
1
|
cbvabv |
|- { x | ph } = { y | ps } |
| 5 |
|
setindregs |
|- ( A. x ( x C_ { y | ps } -> x e. { y | ps } ) -> { y | ps } = _V ) |
| 6 |
|
ssabral |
|- ( x C_ { y | ps } <-> A. y e. x ps ) |
| 7 |
6 2
|
sylbi |
|- ( x C_ { y | ps } -> ph ) |
| 8 |
4
|
eqabcri |
|- ( ph <-> x e. { y | ps } ) |
| 9 |
7 8
|
sylib |
|- ( x C_ { y | ps } -> x e. { y | ps } ) |
| 10 |
5 9
|
mpg |
|- { y | ps } = _V |
| 11 |
4 10
|
eqtri |
|- { x | ph } = _V |
| 12 |
11
|
eqabcri |
|- ( ph <-> x e. _V ) |
| 13 |
3 12
|
mpbir |
|- ph |