Metamath Proof Explorer


Theorem setinds2regs

Description: Principle of set induction (or _E -induction). If a property passes from all elements of x to x itself, then it holds for all x . (Contributed by BTernaryTau, 31-Dec-2025)

Ref Expression
Hypotheses setinds2regs.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
setinds2regs.2 ( ∀ 𝑦𝑥 𝜓𝜑 )
Assertion setinds2regs 𝜑

Proof

Step Hyp Ref Expression
1 setinds2regs.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 setinds2regs.2 ( ∀ 𝑦𝑥 𝜓𝜑 )
3 vex 𝑥 ∈ V
4 1 cbvabv { 𝑥𝜑 } = { 𝑦𝜓 }
5 setindregs ( ∀ 𝑥 ( 𝑥 ⊆ { 𝑦𝜓 } → 𝑥 ∈ { 𝑦𝜓 } ) → { 𝑦𝜓 } = V )
6 ssabral ( 𝑥 ⊆ { 𝑦𝜓 } ↔ ∀ 𝑦𝑥 𝜓 )
7 6 2 sylbi ( 𝑥 ⊆ { 𝑦𝜓 } → 𝜑 )
8 4 eqabcri ( 𝜑𝑥 ∈ { 𝑦𝜓 } )
9 7 8 sylib ( 𝑥 ⊆ { 𝑦𝜓 } → 𝑥 ∈ { 𝑦𝜓 } )
10 5 9 mpg { 𝑦𝜓 } = V
11 4 10 eqtri { 𝑥𝜑 } = V
12 11 eqabcri ( 𝜑𝑥 ∈ V )
13 3 12 mpbir 𝜑