Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BTernaryTau
ZF set theory
Finitism
setinds2regs
Metamath Proof Explorer
Description: Principle of set induction (or _E -induction). If a property passes
from all elements of x to x itself, then it holds for all
x . (Contributed by BTernaryTau , 31-Dec-2025)
Ref
Expression
Hypotheses
setinds2regs.1
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) )
setinds2regs.2
⊢ ( ∀ 𝑦 ∈ 𝑥 𝜓 → 𝜑 )
Assertion
setinds2regs
⊢ 𝜑
Proof
Step
Hyp
Ref
Expression
1
setinds2regs.1
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) )
2
setinds2regs.2
⊢ ( ∀ 𝑦 ∈ 𝑥 𝜓 → 𝜑 )
3
vex
⊢ 𝑥 ∈ V
4
1
cbvabv
⊢ { 𝑥 ∣ 𝜑 } = { 𝑦 ∣ 𝜓 }
5
setindregs
⊢ ( ∀ 𝑥 ( 𝑥 ⊆ { 𝑦 ∣ 𝜓 } → 𝑥 ∈ { 𝑦 ∣ 𝜓 } ) → { 𝑦 ∣ 𝜓 } = V )
6
ssabral
⊢ ( 𝑥 ⊆ { 𝑦 ∣ 𝜓 } ↔ ∀ 𝑦 ∈ 𝑥 𝜓 )
7
6 2
sylbi
⊢ ( 𝑥 ⊆ { 𝑦 ∣ 𝜓 } → 𝜑 )
8
4
eqabcri
⊢ ( 𝜑 ↔ 𝑥 ∈ { 𝑦 ∣ 𝜓 } )
9
7 8
sylib
⊢ ( 𝑥 ⊆ { 𝑦 ∣ 𝜓 } → 𝑥 ∈ { 𝑦 ∣ 𝜓 } )
10
5 9
mpg
⊢ { 𝑦 ∣ 𝜓 } = V
11
4 10
eqtri
⊢ { 𝑥 ∣ 𝜑 } = V
12
11
eqabcri
⊢ ( 𝜑 ↔ 𝑥 ∈ V )
13
3 12
mpbir
⊢ 𝜑