| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setsms.x |  |-  ( ph -> X = ( Base ` M ) ) | 
						
							| 2 |  | setsms.d |  |-  ( ph -> D = ( ( dist ` M ) |` ( X X. X ) ) ) | 
						
							| 3 |  | setsms.k |  |-  ( ph -> K = ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) | 
						
							| 4 |  | setsms.m |  |-  ( ph -> M e. V ) | 
						
							| 5 | 1 2 3 4 | setsxms |  |-  ( ph -> ( K e. *MetSp <-> D e. ( *Met ` X ) ) ) | 
						
							| 6 | 1 2 3 | setsmsds |  |-  ( ph -> ( dist ` M ) = ( dist ` K ) ) | 
						
							| 7 | 1 2 3 | setsmsbas |  |-  ( ph -> X = ( Base ` K ) ) | 
						
							| 8 | 7 | sqxpeqd |  |-  ( ph -> ( X X. X ) = ( ( Base ` K ) X. ( Base ` K ) ) ) | 
						
							| 9 | 6 8 | reseq12d |  |-  ( ph -> ( ( dist ` M ) |` ( X X. X ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) | 
						
							| 10 | 2 9 | eqtr2d |  |-  ( ph -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = D ) | 
						
							| 11 | 7 | fveq2d |  |-  ( ph -> ( Met ` X ) = ( Met ` ( Base ` K ) ) ) | 
						
							| 12 | 11 | eqcomd |  |-  ( ph -> ( Met ` ( Base ` K ) ) = ( Met ` X ) ) | 
						
							| 13 | 10 12 | eleq12d |  |-  ( ph -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) <-> D e. ( Met ` X ) ) ) | 
						
							| 14 | 5 13 | anbi12d |  |-  ( ph -> ( ( K e. *MetSp /\ ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) ) <-> ( D e. ( *Met ` X ) /\ D e. ( Met ` X ) ) ) ) | 
						
							| 15 |  | eqid |  |-  ( TopOpen ` K ) = ( TopOpen ` K ) | 
						
							| 16 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 17 |  | eqid |  |-  ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) | 
						
							| 18 | 15 16 17 | isms |  |-  ( K e. MetSp <-> ( K e. *MetSp /\ ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) ) ) | 
						
							| 19 |  | metxmet |  |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) | 
						
							| 20 | 19 | pm4.71ri |  |-  ( D e. ( Met ` X ) <-> ( D e. ( *Met ` X ) /\ D e. ( Met ` X ) ) ) | 
						
							| 21 | 14 18 20 | 3bitr4g |  |-  ( ph -> ( K e. MetSp <-> D e. ( Met ` X ) ) ) |