| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setsms.x |  |-  ( ph -> X = ( Base ` M ) ) | 
						
							| 2 |  | setsms.d |  |-  ( ph -> D = ( ( dist ` M ) |` ( X X. X ) ) ) | 
						
							| 3 |  | setsms.k |  |-  ( ph -> K = ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) | 
						
							| 4 |  | setsms.m |  |-  ( ph -> M e. V ) | 
						
							| 5 | 1 2 3 4 | setsmstopn |  |-  ( ph -> ( MetOpen ` D ) = ( TopOpen ` K ) ) | 
						
							| 6 | 1 2 3 | setsmsds |  |-  ( ph -> ( dist ` M ) = ( dist ` K ) ) | 
						
							| 7 | 1 2 3 | setsmsbas |  |-  ( ph -> X = ( Base ` K ) ) | 
						
							| 8 | 7 | sqxpeqd |  |-  ( ph -> ( X X. X ) = ( ( Base ` K ) X. ( Base ` K ) ) ) | 
						
							| 9 | 6 8 | reseq12d |  |-  ( ph -> ( ( dist ` M ) |` ( X X. X ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) | 
						
							| 10 | 2 9 | eqtrd |  |-  ( ph -> D = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( ph -> ( MetOpen ` D ) = ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) | 
						
							| 12 | 5 11 | eqtr3d |  |-  ( ph -> ( TopOpen ` K ) = ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) | 
						
							| 13 |  | eqid |  |-  ( TopOpen ` K ) = ( TopOpen ` K ) | 
						
							| 14 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 15 |  | eqid |  |-  ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) | 
						
							| 16 | 13 14 15 | isxms2 |  |-  ( K e. *MetSp <-> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( *Met ` ( Base ` K ) ) /\ ( TopOpen ` K ) = ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) ) | 
						
							| 17 | 16 | rbaib |  |-  ( ( TopOpen ` K ) = ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) -> ( K e. *MetSp <-> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( *Met ` ( Base ` K ) ) ) ) | 
						
							| 18 | 12 17 | syl |  |-  ( ph -> ( K e. *MetSp <-> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( *Met ` ( Base ` K ) ) ) ) | 
						
							| 19 | 7 | fveq2d |  |-  ( ph -> ( *Met ` X ) = ( *Met ` ( Base ` K ) ) ) | 
						
							| 20 | 10 19 | eleq12d |  |-  ( ph -> ( D e. ( *Met ` X ) <-> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( *Met ` ( Base ` K ) ) ) ) | 
						
							| 21 | 18 20 | bitr4d |  |-  ( ph -> ( K e. *MetSp <-> D e. ( *Met ` X ) ) ) |