Metamath Proof Explorer


Theorem setsxms

Description: The constructed metric space is a metric space iff the provided distance function is a metric. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypotheses setsms.x ⊒ ( πœ‘ β†’ 𝑋 = ( Base β€˜ 𝑀 ) )
setsms.d ⊒ ( πœ‘ β†’ 𝐷 = ( ( dist β€˜ 𝑀 ) β†Ύ ( 𝑋 Γ— 𝑋 ) ) )
setsms.k ⊒ ( πœ‘ β†’ 𝐾 = ( 𝑀 sSet ⟨ ( TopSet β€˜ ndx ) , ( MetOpen β€˜ 𝐷 ) ⟩ ) )
setsms.m ⊒ ( πœ‘ β†’ 𝑀 ∈ 𝑉 )
Assertion setsxms ( πœ‘ β†’ ( 𝐾 ∈ ∞MetSp ↔ 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 setsms.x ⊒ ( πœ‘ β†’ 𝑋 = ( Base β€˜ 𝑀 ) )
2 setsms.d ⊒ ( πœ‘ β†’ 𝐷 = ( ( dist β€˜ 𝑀 ) β†Ύ ( 𝑋 Γ— 𝑋 ) ) )
3 setsms.k ⊒ ( πœ‘ β†’ 𝐾 = ( 𝑀 sSet ⟨ ( TopSet β€˜ ndx ) , ( MetOpen β€˜ 𝐷 ) ⟩ ) )
4 setsms.m ⊒ ( πœ‘ β†’ 𝑀 ∈ 𝑉 )
5 1 2 3 4 setsmstopn ⊒ ( πœ‘ β†’ ( MetOpen β€˜ 𝐷 ) = ( TopOpen β€˜ 𝐾 ) )
6 1 2 3 setsmsds ⊒ ( πœ‘ β†’ ( dist β€˜ 𝑀 ) = ( dist β€˜ 𝐾 ) )
7 1 2 3 setsmsbas ⊒ ( πœ‘ β†’ 𝑋 = ( Base β€˜ 𝐾 ) )
8 7 sqxpeqd ⊒ ( πœ‘ β†’ ( 𝑋 Γ— 𝑋 ) = ( ( Base β€˜ 𝐾 ) Γ— ( Base β€˜ 𝐾 ) ) )
9 6 8 reseq12d ⊒ ( πœ‘ β†’ ( ( dist β€˜ 𝑀 ) β†Ύ ( 𝑋 Γ— 𝑋 ) ) = ( ( dist β€˜ 𝐾 ) β†Ύ ( ( Base β€˜ 𝐾 ) Γ— ( Base β€˜ 𝐾 ) ) ) )
10 2 9 eqtrd ⊒ ( πœ‘ β†’ 𝐷 = ( ( dist β€˜ 𝐾 ) β†Ύ ( ( Base β€˜ 𝐾 ) Γ— ( Base β€˜ 𝐾 ) ) ) )
11 10 fveq2d ⊒ ( πœ‘ β†’ ( MetOpen β€˜ 𝐷 ) = ( MetOpen β€˜ ( ( dist β€˜ 𝐾 ) β†Ύ ( ( Base β€˜ 𝐾 ) Γ— ( Base β€˜ 𝐾 ) ) ) ) )
12 5 11 eqtr3d ⊒ ( πœ‘ β†’ ( TopOpen β€˜ 𝐾 ) = ( MetOpen β€˜ ( ( dist β€˜ 𝐾 ) β†Ύ ( ( Base β€˜ 𝐾 ) Γ— ( Base β€˜ 𝐾 ) ) ) ) )
13 eqid ⊒ ( TopOpen β€˜ 𝐾 ) = ( TopOpen β€˜ 𝐾 )
14 eqid ⊒ ( Base β€˜ 𝐾 ) = ( Base β€˜ 𝐾 )
15 eqid ⊒ ( ( dist β€˜ 𝐾 ) β†Ύ ( ( Base β€˜ 𝐾 ) Γ— ( Base β€˜ 𝐾 ) ) ) = ( ( dist β€˜ 𝐾 ) β†Ύ ( ( Base β€˜ 𝐾 ) Γ— ( Base β€˜ 𝐾 ) ) )
16 13 14 15 isxms2 ⊒ ( 𝐾 ∈ ∞MetSp ↔ ( ( ( dist β€˜ 𝐾 ) β†Ύ ( ( Base β€˜ 𝐾 ) Γ— ( Base β€˜ 𝐾 ) ) ) ∈ ( ∞Met β€˜ ( Base β€˜ 𝐾 ) ) ∧ ( TopOpen β€˜ 𝐾 ) = ( MetOpen β€˜ ( ( dist β€˜ 𝐾 ) β†Ύ ( ( Base β€˜ 𝐾 ) Γ— ( Base β€˜ 𝐾 ) ) ) ) ) )
17 16 rbaib ⊒ ( ( TopOpen β€˜ 𝐾 ) = ( MetOpen β€˜ ( ( dist β€˜ 𝐾 ) β†Ύ ( ( Base β€˜ 𝐾 ) Γ— ( Base β€˜ 𝐾 ) ) ) ) β†’ ( 𝐾 ∈ ∞MetSp ↔ ( ( dist β€˜ 𝐾 ) β†Ύ ( ( Base β€˜ 𝐾 ) Γ— ( Base β€˜ 𝐾 ) ) ) ∈ ( ∞Met β€˜ ( Base β€˜ 𝐾 ) ) ) )
18 12 17 syl ⊒ ( πœ‘ β†’ ( 𝐾 ∈ ∞MetSp ↔ ( ( dist β€˜ 𝐾 ) β†Ύ ( ( Base β€˜ 𝐾 ) Γ— ( Base β€˜ 𝐾 ) ) ) ∈ ( ∞Met β€˜ ( Base β€˜ 𝐾 ) ) ) )
19 7 fveq2d ⊒ ( πœ‘ β†’ ( ∞Met β€˜ 𝑋 ) = ( ∞Met β€˜ ( Base β€˜ 𝐾 ) ) )
20 10 19 eleq12d ⊒ ( πœ‘ β†’ ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) ↔ ( ( dist β€˜ 𝐾 ) β†Ύ ( ( Base β€˜ 𝐾 ) Γ— ( Base β€˜ 𝐾 ) ) ) ∈ ( ∞Met β€˜ ( Base β€˜ 𝐾 ) ) ) )
21 18 20 bitr4d ⊒ ( πœ‘ β†’ ( 𝐾 ∈ ∞MetSp ↔ 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) ) )