| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setsms.x | ⊢ ( 𝜑  →  𝑋  =  ( Base ‘ 𝑀 ) ) | 
						
							| 2 |  | setsms.d | ⊢ ( 𝜑  →  𝐷  =  ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) ) ) | 
						
							| 3 |  | setsms.k | ⊢ ( 𝜑  →  𝐾  =  ( 𝑀  sSet  〈 ( TopSet ‘ ndx ) ,  ( MetOpen ‘ 𝐷 ) 〉 ) ) | 
						
							| 4 |  | setsms.m | ⊢ ( 𝜑  →  𝑀  ∈  𝑉 ) | 
						
							| 5 | 1 2 3 4 | setsmstopn | ⊢ ( 𝜑  →  ( MetOpen ‘ 𝐷 )  =  ( TopOpen ‘ 𝐾 ) ) | 
						
							| 6 | 1 2 3 | setsmsds | ⊢ ( 𝜑  →  ( dist ‘ 𝑀 )  =  ( dist ‘ 𝐾 ) ) | 
						
							| 7 | 1 2 3 | setsmsbas | ⊢ ( 𝜑  →  𝑋  =  ( Base ‘ 𝐾 ) ) | 
						
							| 8 | 7 | sqxpeqd | ⊢ ( 𝜑  →  ( 𝑋  ×  𝑋 )  =  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) ) | 
						
							| 9 | 6 8 | reseq12d | ⊢ ( 𝜑  →  ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) )  =  ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 10 | 2 9 | eqtrd | ⊢ ( 𝜑  →  𝐷  =  ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝜑  →  ( MetOpen ‘ 𝐷 )  =  ( MetOpen ‘ ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) ) ) ) | 
						
							| 12 | 5 11 | eqtr3d | ⊢ ( 𝜑  →  ( TopOpen ‘ 𝐾 )  =  ( MetOpen ‘ ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( TopOpen ‘ 𝐾 )  =  ( TopOpen ‘ 𝐾 ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 15 |  | eqid | ⊢ ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) )  =  ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) ) | 
						
							| 16 | 13 14 15 | isxms2 | ⊢ ( 𝐾  ∈  ∞MetSp  ↔  ( ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝐾 ) )  ∧  ( TopOpen ‘ 𝐾 )  =  ( MetOpen ‘ ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) ) ) ) ) | 
						
							| 17 | 16 | rbaib | ⊢ ( ( TopOpen ‘ 𝐾 )  =  ( MetOpen ‘ ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) ) )  →  ( 𝐾  ∈  ∞MetSp  ↔  ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 18 | 12 17 | syl | ⊢ ( 𝜑  →  ( 𝐾  ∈  ∞MetSp  ↔  ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 19 | 7 | fveq2d | ⊢ ( 𝜑  →  ( ∞Met ‘ 𝑋 )  =  ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) | 
						
							| 20 | 10 19 | eleq12d | ⊢ ( 𝜑  →  ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ↔  ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 21 | 18 20 | bitr4d | ⊢ ( 𝜑  →  ( 𝐾  ∈  ∞MetSp  ↔  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) ) |