Step |
Hyp |
Ref |
Expression |
1 |
|
setsms.x |
β’ ( π β π = ( Base β π ) ) |
2 |
|
setsms.d |
β’ ( π β π· = ( ( dist β π ) βΎ ( π Γ π ) ) ) |
3 |
|
setsms.k |
β’ ( π β πΎ = ( π sSet β¨ ( TopSet β ndx ) , ( MetOpen β π· ) β© ) ) |
4 |
|
setsms.m |
β’ ( π β π β π ) |
5 |
1 2 3 4
|
setsmstopn |
β’ ( π β ( MetOpen β π· ) = ( TopOpen β πΎ ) ) |
6 |
1 2 3
|
setsmsds |
β’ ( π β ( dist β π ) = ( dist β πΎ ) ) |
7 |
1 2 3
|
setsmsbas |
β’ ( π β π = ( Base β πΎ ) ) |
8 |
7
|
sqxpeqd |
β’ ( π β ( π Γ π ) = ( ( Base β πΎ ) Γ ( Base β πΎ ) ) ) |
9 |
6 8
|
reseq12d |
β’ ( π β ( ( dist β π ) βΎ ( π Γ π ) ) = ( ( dist β πΎ ) βΎ ( ( Base β πΎ ) Γ ( Base β πΎ ) ) ) ) |
10 |
2 9
|
eqtrd |
β’ ( π β π· = ( ( dist β πΎ ) βΎ ( ( Base β πΎ ) Γ ( Base β πΎ ) ) ) ) |
11 |
10
|
fveq2d |
β’ ( π β ( MetOpen β π· ) = ( MetOpen β ( ( dist β πΎ ) βΎ ( ( Base β πΎ ) Γ ( Base β πΎ ) ) ) ) ) |
12 |
5 11
|
eqtr3d |
β’ ( π β ( TopOpen β πΎ ) = ( MetOpen β ( ( dist β πΎ ) βΎ ( ( Base β πΎ ) Γ ( Base β πΎ ) ) ) ) ) |
13 |
|
eqid |
β’ ( TopOpen β πΎ ) = ( TopOpen β πΎ ) |
14 |
|
eqid |
β’ ( Base β πΎ ) = ( Base β πΎ ) |
15 |
|
eqid |
β’ ( ( dist β πΎ ) βΎ ( ( Base β πΎ ) Γ ( Base β πΎ ) ) ) = ( ( dist β πΎ ) βΎ ( ( Base β πΎ ) Γ ( Base β πΎ ) ) ) |
16 |
13 14 15
|
isxms2 |
β’ ( πΎ β βMetSp β ( ( ( dist β πΎ ) βΎ ( ( Base β πΎ ) Γ ( Base β πΎ ) ) ) β ( βMet β ( Base β πΎ ) ) β§ ( TopOpen β πΎ ) = ( MetOpen β ( ( dist β πΎ ) βΎ ( ( Base β πΎ ) Γ ( Base β πΎ ) ) ) ) ) ) |
17 |
16
|
rbaib |
β’ ( ( TopOpen β πΎ ) = ( MetOpen β ( ( dist β πΎ ) βΎ ( ( Base β πΎ ) Γ ( Base β πΎ ) ) ) ) β ( πΎ β βMetSp β ( ( dist β πΎ ) βΎ ( ( Base β πΎ ) Γ ( Base β πΎ ) ) ) β ( βMet β ( Base β πΎ ) ) ) ) |
18 |
12 17
|
syl |
β’ ( π β ( πΎ β βMetSp β ( ( dist β πΎ ) βΎ ( ( Base β πΎ ) Γ ( Base β πΎ ) ) ) β ( βMet β ( Base β πΎ ) ) ) ) |
19 |
7
|
fveq2d |
β’ ( π β ( βMet β π ) = ( βMet β ( Base β πΎ ) ) ) |
20 |
10 19
|
eleq12d |
β’ ( π β ( π· β ( βMet β π ) β ( ( dist β πΎ ) βΎ ( ( Base β πΎ ) Γ ( Base β πΎ ) ) ) β ( βMet β ( Base β πΎ ) ) ) ) |
21 |
18 20
|
bitr4d |
β’ ( π β ( πΎ β βMetSp β π· β ( βMet β π ) ) ) |