| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setsms.x |
⊢ ( 𝜑 → 𝑋 = ( Base ‘ 𝑀 ) ) |
| 2 |
|
setsms.d |
⊢ ( 𝜑 → 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) |
| 3 |
|
setsms.k |
⊢ ( 𝜑 → 𝐾 = ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) |
| 4 |
|
dsid |
⊢ dist = Slot ( dist ‘ ndx ) |
| 5 |
|
dsndxntsetndx |
⊢ ( dist ‘ ndx ) ≠ ( TopSet ‘ ndx ) |
| 6 |
4 5
|
setsnid |
⊢ ( dist ‘ 𝑀 ) = ( dist ‘ ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) |
| 7 |
3
|
fveq2d |
⊢ ( 𝜑 → ( dist ‘ 𝐾 ) = ( dist ‘ ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) ) |
| 8 |
6 7
|
eqtr4id |
⊢ ( 𝜑 → ( dist ‘ 𝑀 ) = ( dist ‘ 𝐾 ) ) |