Metamath Proof Explorer


Theorem setsmsds

Description: The distance function of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015) (Proof shortened by AV, 11-Nov-2024)

Ref Expression
Hypotheses setsms.x φX=BaseM
setsms.d φD=distMX×X
setsms.k φK=MsSetTopSetndxMetOpenD
Assertion setsmsds φdistM=distK

Proof

Step Hyp Ref Expression
1 setsms.x φX=BaseM
2 setsms.d φD=distMX×X
3 setsms.k φK=MsSetTopSetndxMetOpenD
4 dsid dist=Slotdistndx
5 dsndxntsetndx distndxTopSetndx
6 4 5 setsnid distM=distMsSetTopSetndxMetOpenD
7 3 fveq2d φdistK=distMsSetTopSetndxMetOpenD
8 6 7 eqtr4id φdistM=distK