| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setsms.x | ⊢ ( 𝜑  →  𝑋  =  ( Base ‘ 𝑀 ) ) | 
						
							| 2 |  | setsms.d | ⊢ ( 𝜑  →  𝐷  =  ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) ) ) | 
						
							| 3 |  | setsms.k | ⊢ ( 𝜑  →  𝐾  =  ( 𝑀  sSet  〈 ( TopSet ‘ ndx ) ,  ( MetOpen ‘ 𝐷 ) 〉 ) ) | 
						
							| 4 |  | dsid | ⊢ dist  =  Slot  ( dist ‘ ndx ) | 
						
							| 5 |  | 9re | ⊢ 9  ∈  ℝ | 
						
							| 6 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 7 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 8 |  | 9nn0 | ⊢ 9  ∈  ℕ0 | 
						
							| 9 |  | 9lt10 | ⊢ 9  <  ; 1 0 | 
						
							| 10 | 6 7 8 9 | declti | ⊢ 9  <  ; 1 2 | 
						
							| 11 | 5 10 | gtneii | ⊢ ; 1 2  ≠  9 | 
						
							| 12 |  | dsndx | ⊢ ( dist ‘ ndx )  =  ; 1 2 | 
						
							| 13 |  | tsetndx | ⊢ ( TopSet ‘ ndx )  =  9 | 
						
							| 14 | 12 13 | neeq12i | ⊢ ( ( dist ‘ ndx )  ≠  ( TopSet ‘ ndx )  ↔  ; 1 2  ≠  9 ) | 
						
							| 15 | 11 14 | mpbir | ⊢ ( dist ‘ ndx )  ≠  ( TopSet ‘ ndx ) | 
						
							| 16 | 4 15 | setsnid | ⊢ ( dist ‘ 𝑀 )  =  ( dist ‘ ( 𝑀  sSet  〈 ( TopSet ‘ ndx ) ,  ( MetOpen ‘ 𝐷 ) 〉 ) ) | 
						
							| 17 | 3 | fveq2d | ⊢ ( 𝜑  →  ( dist ‘ 𝐾 )  =  ( dist ‘ ( 𝑀  sSet  〈 ( TopSet ‘ ndx ) ,  ( MetOpen ‘ 𝐷 ) 〉 ) ) ) | 
						
							| 18 | 16 17 | eqtr4id | ⊢ ( 𝜑  →  ( dist ‘ 𝑀 )  =  ( dist ‘ 𝐾 ) ) |