Metamath Proof Explorer


Theorem setsmstset

Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypotheses setsms.x ( 𝜑𝑋 = ( Base ‘ 𝑀 ) )
setsms.d ( 𝜑𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) )
setsms.k ( 𝜑𝐾 = ( 𝑀 sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) ⟩ ) )
setsms.m ( 𝜑𝑀𝑉 )
Assertion setsmstset ( 𝜑 → ( MetOpen ‘ 𝐷 ) = ( TopSet ‘ 𝐾 ) )

Proof

Step Hyp Ref Expression
1 setsms.x ( 𝜑𝑋 = ( Base ‘ 𝑀 ) )
2 setsms.d ( 𝜑𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) )
3 setsms.k ( 𝜑𝐾 = ( 𝑀 sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) ⟩ ) )
4 setsms.m ( 𝜑𝑀𝑉 )
5 fvex ( MetOpen ‘ 𝐷 ) ∈ V
6 tsetid TopSet = Slot ( TopSet ‘ ndx )
7 6 setsid ( ( 𝑀𝑉 ∧ ( MetOpen ‘ 𝐷 ) ∈ V ) → ( MetOpen ‘ 𝐷 ) = ( TopSet ‘ ( 𝑀 sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) ⟩ ) ) )
8 4 5 7 sylancl ( 𝜑 → ( MetOpen ‘ 𝐷 ) = ( TopSet ‘ ( 𝑀 sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) ⟩ ) ) )
9 3 fveq2d ( 𝜑 → ( TopSet ‘ 𝐾 ) = ( TopSet ‘ ( 𝑀 sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) ⟩ ) ) )
10 8 9 eqtr4d ( 𝜑 → ( MetOpen ‘ 𝐷 ) = ( TopSet ‘ 𝐾 ) )