| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setsms.x |
|- ( ph -> X = ( Base ` M ) ) |
| 2 |
|
setsms.d |
|- ( ph -> D = ( ( dist ` M ) |` ( X X. X ) ) ) |
| 3 |
|
setsms.k |
|- ( ph -> K = ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) |
| 4 |
|
setsms.m |
|- ( ph -> M e. V ) |
| 5 |
|
fvex |
|- ( MetOpen ` D ) e. _V |
| 6 |
|
tsetid |
|- TopSet = Slot ( TopSet ` ndx ) |
| 7 |
6
|
setsid |
|- ( ( M e. V /\ ( MetOpen ` D ) e. _V ) -> ( MetOpen ` D ) = ( TopSet ` ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) ) |
| 8 |
4 5 7
|
sylancl |
|- ( ph -> ( MetOpen ` D ) = ( TopSet ` ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) ) |
| 9 |
3
|
fveq2d |
|- ( ph -> ( TopSet ` K ) = ( TopSet ` ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) ) |
| 10 |
8 9
|
eqtr4d |
|- ( ph -> ( MetOpen ` D ) = ( TopSet ` K ) ) |