Metamath Proof Explorer


Theorem setsmstset

Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypotheses setsms.x φX=BaseM
setsms.d φD=distMX×X
setsms.k φK=MsSetTopSetndxMetOpenD
setsms.m φMV
Assertion setsmstset φMetOpenD=TopSetK

Proof

Step Hyp Ref Expression
1 setsms.x φX=BaseM
2 setsms.d φD=distMX×X
3 setsms.k φK=MsSetTopSetndxMetOpenD
4 setsms.m φMV
5 fvex MetOpenDV
6 tsetid TopSet=SlotTopSetndx
7 6 setsid MVMetOpenDVMetOpenD=TopSetMsSetTopSetndxMetOpenD
8 4 5 7 sylancl φMetOpenD=TopSetMsSetTopSetndxMetOpenD
9 3 fveq2d φTopSetK=TopSetMsSetTopSetndxMetOpenD
10 8 9 eqtr4d φMetOpenD=TopSetK