Metamath Proof Explorer


Theorem setsmstset

Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypotheses setsms.x φ X = Base M
setsms.d φ D = dist M X × X
setsms.k φ K = M sSet TopSet ndx MetOpen D
setsms.m φ M V
Assertion setsmstset φ MetOpen D = TopSet K

Proof

Step Hyp Ref Expression
1 setsms.x φ X = Base M
2 setsms.d φ D = dist M X × X
3 setsms.k φ K = M sSet TopSet ndx MetOpen D
4 setsms.m φ M V
5 fvex MetOpen D V
6 tsetid TopSet = Slot TopSet ndx
7 6 setsid M V MetOpen D V MetOpen D = TopSet M sSet TopSet ndx MetOpen D
8 4 5 7 sylancl φ MetOpen D = TopSet M sSet TopSet ndx MetOpen D
9 3 fveq2d φ TopSet K = TopSet M sSet TopSet ndx MetOpen D
10 8 9 eqtr4d φ MetOpen D = TopSet K