| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setsms.x |  |-  ( ph -> X = ( Base ` M ) ) | 
						
							| 2 |  | setsms.d |  |-  ( ph -> D = ( ( dist ` M ) |` ( X X. X ) ) ) | 
						
							| 3 |  | setsms.k |  |-  ( ph -> K = ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) | 
						
							| 4 |  | dsid |  |-  dist = Slot ( dist ` ndx ) | 
						
							| 5 |  | 9re |  |-  9 e. RR | 
						
							| 6 |  | 1nn |  |-  1 e. NN | 
						
							| 7 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 8 |  | 9nn0 |  |-  9 e. NN0 | 
						
							| 9 |  | 9lt10 |  |-  9 < ; 1 0 | 
						
							| 10 | 6 7 8 9 | declti |  |-  9 < ; 1 2 | 
						
							| 11 | 5 10 | gtneii |  |-  ; 1 2 =/= 9 | 
						
							| 12 |  | dsndx |  |-  ( dist ` ndx ) = ; 1 2 | 
						
							| 13 |  | tsetndx |  |-  ( TopSet ` ndx ) = 9 | 
						
							| 14 | 12 13 | neeq12i |  |-  ( ( dist ` ndx ) =/= ( TopSet ` ndx ) <-> ; 1 2 =/= 9 ) | 
						
							| 15 | 11 14 | mpbir |  |-  ( dist ` ndx ) =/= ( TopSet ` ndx ) | 
						
							| 16 | 4 15 | setsnid |  |-  ( dist ` M ) = ( dist ` ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) | 
						
							| 17 | 3 | fveq2d |  |-  ( ph -> ( dist ` K ) = ( dist ` ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) ) | 
						
							| 18 | 16 17 | eqtr4id |  |-  ( ph -> ( dist ` M ) = ( dist ` K ) ) |