Description: Relation between df-sets and df-strset . Temporary theorem kept during the transition from the former to the latter. (Contributed by BJ, 13-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | setsstrset | |- ( ( S e. V /\ B e. W ) -> [s B / A ]s S = ( S sSet <. ( A ` ndx ) , B >. ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-strset | |- [s B / A ]s S = ( ( S |` ( _V \ { ( A ` ndx ) } ) ) u. { <. ( A ` ndx ) , B >. } ) |
|
2 | setsval | |- ( ( S e. V /\ B e. W ) -> ( S sSet <. ( A ` ndx ) , B >. ) = ( ( S |` ( _V \ { ( A ` ndx ) } ) ) u. { <. ( A ` ndx ) , B >. } ) ) |
|
3 | 1 2 | eqtr4id | |- ( ( S e. V /\ B e. W ) -> [s B / A ]s S = ( S sSet <. ( A ` ndx ) , B >. ) ) |