Description: Relation between df-sets and df-strset . Temporary theorem kept during the transition from the former to the latter. (Contributed by BJ, 13-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | setsstrset | |- ( ( S e. V /\ B e. W ) -> [s B / A ]s S = ( S sSet <. ( A ` ndx ) , B >. ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-strset |  |-  [s B / A ]s S = ( ( S |` ( _V \ { ( A ` ndx ) } ) ) u. { <. ( A ` ndx ) , B >. } ) | |
| 2 | setsval |  |-  ( ( S e. V /\ B e. W ) -> ( S sSet <. ( A ` ndx ) , B >. ) = ( ( S |` ( _V \ { ( A ` ndx ) } ) ) u. { <. ( A ` ndx ) , B >. } ) ) | |
| 3 | 1 2 | eqtr4id | |- ( ( S e. V /\ B e. W ) -> [s B / A ]s S = ( S sSet <. ( A ` ndx ) , B >. ) ) |