Metamath Proof Explorer


Theorem setsstrset

Description: Relation between df-sets and df-strset . Temporary theorem kept during the transition from the former to the latter. (Contributed by BJ, 13-Feb-2022)

Ref Expression
Assertion setsstrset
|- ( ( S e. V /\ B e. W ) -> [s B / A ]s S = ( S sSet <. ( A ` ndx ) , B >. ) )

Proof

Step Hyp Ref Expression
1 df-strset
 |-  [s B / A ]s S = ( ( S |` ( _V \ { ( A ` ndx ) } ) ) u. { <. ( A ` ndx ) , B >. } )
2 setsval
 |-  ( ( S e. V /\ B e. W ) -> ( S sSet <. ( A ` ndx ) , B >. ) = ( ( S |` ( _V \ { ( A ` ndx ) } ) ) u. { <. ( A ` ndx ) , B >. } ) )
3 1 2 eqtr4id
 |-  ( ( S e. V /\ B e. W ) -> [s B / A ]s S = ( S sSet <. ( A ` ndx ) , B >. ) )