Description: Relation between df-sets and df-strset . Temporary theorem kept during the transition from the former to the latter. (Contributed by BJ, 13-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | setsstrset | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → [ 𝐵 / 𝐴 ]struct 𝑆 = ( 𝑆 sSet 〈 ( 𝐴 ‘ ndx ) , 𝐵 〉 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-strset | ⊢ [ 𝐵 / 𝐴 ]struct 𝑆 = ( ( 𝑆 ↾ ( V ∖ { ( 𝐴 ‘ ndx ) } ) ) ∪ { 〈 ( 𝐴 ‘ ndx ) , 𝐵 〉 } ) | |
2 | setsval | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑆 sSet 〈 ( 𝐴 ‘ ndx ) , 𝐵 〉 ) = ( ( 𝑆 ↾ ( V ∖ { ( 𝐴 ‘ ndx ) } ) ) ∪ { 〈 ( 𝐴 ‘ ndx ) , 𝐵 〉 } ) ) | |
3 | 1 2 | eqtr4id | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → [ 𝐵 / 𝐴 ]struct 𝑆 = ( 𝑆 sSet 〈 ( 𝐴 ‘ ndx ) , 𝐵 〉 ) ) |