Metamath Proof Explorer


Theorem sge0nemnf

Description: The generalized sum of nonnegative extended reals is not minus infinity. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0nemnf.1
|- ( ph -> A e. V )
sge0nemnf.2
|- ( ph -> F : A --> ( 0 [,] +oo ) )
Assertion sge0nemnf
|- ( ph -> ( sum^ ` F ) =/= -oo )

Proof

Step Hyp Ref Expression
1 sge0nemnf.1
 |-  ( ph -> A e. V )
2 sge0nemnf.2
 |-  ( ph -> F : A --> ( 0 [,] +oo ) )
3 1 2 sge0cl
 |-  ( ph -> ( sum^ ` F ) e. ( 0 [,] +oo ) )
4 xrge0neqmnf
 |-  ( ( sum^ ` F ) e. ( 0 [,] +oo ) -> ( sum^ ` F ) =/= -oo )
5 3 4 syl
 |-  ( ph -> ( sum^ ` F ) =/= -oo )