Step |
Hyp |
Ref |
Expression |
1 |
|
sge0cl.x |
|- ( ph -> X e. V ) |
2 |
|
sge0cl.f |
|- ( ph -> F : X --> ( 0 [,] +oo ) ) |
3 |
|
fveq2 |
|- ( F = (/) -> ( sum^ ` F ) = ( sum^ ` (/) ) ) |
4 |
|
sge00 |
|- ( sum^ ` (/) ) = 0 |
5 |
4
|
a1i |
|- ( F = (/) -> ( sum^ ` (/) ) = 0 ) |
6 |
3 5
|
eqtrd |
|- ( F = (/) -> ( sum^ ` F ) = 0 ) |
7 |
|
0e0iccpnf |
|- 0 e. ( 0 [,] +oo ) |
8 |
7
|
a1i |
|- ( F = (/) -> 0 e. ( 0 [,] +oo ) ) |
9 |
6 8
|
eqeltrd |
|- ( F = (/) -> ( sum^ ` F ) e. ( 0 [,] +oo ) ) |
10 |
9
|
adantl |
|- ( ( ph /\ F = (/) ) -> ( sum^ ` F ) e. ( 0 [,] +oo ) ) |
11 |
1
|
adantr |
|- ( ( ph /\ +oo e. ran F ) -> X e. V ) |
12 |
2
|
adantr |
|- ( ( ph /\ +oo e. ran F ) -> F : X --> ( 0 [,] +oo ) ) |
13 |
|
simpr |
|- ( ( ph /\ +oo e. ran F ) -> +oo e. ran F ) |
14 |
11 12 13
|
sge0pnfval |
|- ( ( ph /\ +oo e. ran F ) -> ( sum^ ` F ) = +oo ) |
15 |
|
pnfel0pnf |
|- +oo e. ( 0 [,] +oo ) |
16 |
15
|
a1i |
|- ( ( ph /\ +oo e. ran F ) -> +oo e. ( 0 [,] +oo ) ) |
17 |
14 16
|
eqeltrd |
|- ( ( ph /\ +oo e. ran F ) -> ( sum^ ` F ) e. ( 0 [,] +oo ) ) |
18 |
17
|
adantlr |
|- ( ( ( ph /\ -. F = (/) ) /\ +oo e. ran F ) -> ( sum^ ` F ) e. ( 0 [,] +oo ) ) |
19 |
|
simpll |
|- ( ( ( ph /\ -. F = (/) ) /\ -. +oo e. ran F ) -> ph ) |
20 |
|
neqne |
|- ( -. F = (/) -> F =/= (/) ) |
21 |
20
|
ad2antlr |
|- ( ( ( ph /\ -. F = (/) ) /\ -. +oo e. ran F ) -> F =/= (/) ) |
22 |
|
simpr |
|- ( ( ( ph /\ -. F = (/) ) /\ -. +oo e. ran F ) -> -. +oo e. ran F ) |
23 |
|
0xr |
|- 0 e. RR* |
24 |
23
|
a1i |
|- ( ( ( ph /\ F =/= (/) ) /\ -. +oo e. ran F ) -> 0 e. RR* ) |
25 |
|
pnfxr |
|- +oo e. RR* |
26 |
25
|
a1i |
|- ( ( ( ph /\ F =/= (/) ) /\ -. +oo e. ran F ) -> +oo e. RR* ) |
27 |
1
|
adantr |
|- ( ( ph /\ -. +oo e. ran F ) -> X e. V ) |
28 |
2
|
adantr |
|- ( ( ph /\ -. +oo e. ran F ) -> F : X --> ( 0 [,] +oo ) ) |
29 |
|
simpr |
|- ( ( ph /\ -. +oo e. ran F ) -> -. +oo e. ran F ) |
30 |
28 29
|
fge0iccico |
|- ( ( ph /\ -. +oo e. ran F ) -> F : X --> ( 0 [,) +oo ) ) |
31 |
27 30
|
sge0reval |
|- ( ( ph /\ -. +oo e. ran F ) -> ( sum^ ` F ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) ) |
32 |
|
elinel2 |
|- ( x e. ( ~P X i^i Fin ) -> x e. Fin ) |
33 |
32
|
adantl |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> x e. Fin ) |
34 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> F : X --> ( 0 [,] +oo ) ) |
35 |
|
elinel1 |
|- ( x e. ( ~P X i^i Fin ) -> x e. ~P X ) |
36 |
|
elpwi |
|- ( x e. ~P X -> x C_ X ) |
37 |
35 36
|
syl |
|- ( x e. ( ~P X i^i Fin ) -> x C_ X ) |
38 |
37
|
adantl |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> x C_ X ) |
39 |
38
|
adantr |
|- ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> x C_ X ) |
40 |
|
simpr |
|- ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> y e. x ) |
41 |
39 40
|
sseldd |
|- ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> y e. X ) |
42 |
34 41
|
ffvelrnd |
|- ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) e. ( 0 [,] +oo ) ) |
43 |
42
|
adantllr |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) e. ( 0 [,] +oo ) ) |
44 |
|
nne |
|- ( -. ( F ` y ) =/= +oo <-> ( F ` y ) = +oo ) |
45 |
44
|
biimpi |
|- ( -. ( F ` y ) =/= +oo -> ( F ` y ) = +oo ) |
46 |
45
|
eqcomd |
|- ( -. ( F ` y ) =/= +oo -> +oo = ( F ` y ) ) |
47 |
46
|
adantl |
|- ( ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) /\ -. ( F ` y ) =/= +oo ) -> +oo = ( F ` y ) ) |
48 |
2
|
ffund |
|- ( ph -> Fun F ) |
49 |
48
|
3ad2ant1 |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) /\ y e. x ) -> Fun F ) |
50 |
41
|
3impa |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) /\ y e. x ) -> y e. X ) |
51 |
2
|
fdmd |
|- ( ph -> dom F = X ) |
52 |
51
|
eqcomd |
|- ( ph -> X = dom F ) |
53 |
52
|
3ad2ant1 |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) /\ y e. x ) -> X = dom F ) |
54 |
50 53
|
eleqtrd |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) /\ y e. x ) -> y e. dom F ) |
55 |
|
fvelrn |
|- ( ( Fun F /\ y e. dom F ) -> ( F ` y ) e. ran F ) |
56 |
49 54 55
|
syl2anc |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) /\ y e. x ) -> ( F ` y ) e. ran F ) |
57 |
56
|
ad5ant134 |
|- ( ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) /\ -. ( F ` y ) =/= +oo ) -> ( F ` y ) e. ran F ) |
58 |
47 57
|
eqeltrd |
|- ( ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) /\ -. ( F ` y ) =/= +oo ) -> +oo e. ran F ) |
59 |
29
|
ad3antrrr |
|- ( ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) /\ -. ( F ` y ) =/= +oo ) -> -. +oo e. ran F ) |
60 |
58 59
|
condan |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) =/= +oo ) |
61 |
|
ge0xrre |
|- ( ( ( F ` y ) e. ( 0 [,] +oo ) /\ ( F ` y ) =/= +oo ) -> ( F ` y ) e. RR ) |
62 |
43 60 61
|
syl2anc |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) e. RR ) |
63 |
33 62
|
fsumrecl |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> sum_ y e. x ( F ` y ) e. RR ) |
64 |
63
|
ralrimiva |
|- ( ( ph /\ -. +oo e. ran F ) -> A. x e. ( ~P X i^i Fin ) sum_ y e. x ( F ` y ) e. RR ) |
65 |
|
eqid |
|- ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) = ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) |
66 |
65
|
rnmptss |
|- ( A. x e. ( ~P X i^i Fin ) sum_ y e. x ( F ` y ) e. RR -> ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) C_ RR ) |
67 |
64 66
|
syl |
|- ( ( ph /\ -. +oo e. ran F ) -> ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) C_ RR ) |
68 |
|
ressxr |
|- RR C_ RR* |
69 |
68
|
a1i |
|- ( ( ph /\ -. +oo e. ran F ) -> RR C_ RR* ) |
70 |
67 69
|
sstrd |
|- ( ( ph /\ -. +oo e. ran F ) -> ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) C_ RR* ) |
71 |
|
supxrcl |
|- ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) C_ RR* -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) e. RR* ) |
72 |
70 71
|
syl |
|- ( ( ph /\ -. +oo e. ran F ) -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) e. RR* ) |
73 |
31 72
|
eqeltrd |
|- ( ( ph /\ -. +oo e. ran F ) -> ( sum^ ` F ) e. RR* ) |
74 |
73
|
adantlr |
|- ( ( ( ph /\ F =/= (/) ) /\ -. +oo e. ran F ) -> ( sum^ ` F ) e. RR* ) |
75 |
52
|
adantr |
|- ( ( ph /\ F =/= (/) ) -> X = dom F ) |
76 |
|
neneq |
|- ( F =/= (/) -> -. F = (/) ) |
77 |
76
|
adantl |
|- ( ( ph /\ F =/= (/) ) -> -. F = (/) ) |
78 |
|
frel |
|- ( F : X --> ( 0 [,] +oo ) -> Rel F ) |
79 |
2 78
|
syl |
|- ( ph -> Rel F ) |
80 |
79
|
adantr |
|- ( ( ph /\ F =/= (/) ) -> Rel F ) |
81 |
|
reldm0 |
|- ( Rel F -> ( F = (/) <-> dom F = (/) ) ) |
82 |
80 81
|
syl |
|- ( ( ph /\ F =/= (/) ) -> ( F = (/) <-> dom F = (/) ) ) |
83 |
77 82
|
mtbid |
|- ( ( ph /\ F =/= (/) ) -> -. dom F = (/) ) |
84 |
83
|
neqned |
|- ( ( ph /\ F =/= (/) ) -> dom F =/= (/) ) |
85 |
75 84
|
eqnetrd |
|- ( ( ph /\ F =/= (/) ) -> X =/= (/) ) |
86 |
|
n0 |
|- ( X =/= (/) <-> E. z z e. X ) |
87 |
85 86
|
sylib |
|- ( ( ph /\ F =/= (/) ) -> E. z z e. X ) |
88 |
87
|
adantr |
|- ( ( ( ph /\ F =/= (/) ) /\ -. +oo e. ran F ) -> E. z z e. X ) |
89 |
23
|
a1i |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) -> 0 e. RR* ) |
90 |
2
|
ffvelrnda |
|- ( ( ph /\ z e. X ) -> ( F ` z ) e. ( 0 [,] +oo ) ) |
91 |
90
|
adantlr |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) -> ( F ` z ) e. ( 0 [,] +oo ) ) |
92 |
|
nne |
|- ( -. ( F ` z ) =/= +oo <-> ( F ` z ) = +oo ) |
93 |
92
|
biimpi |
|- ( -. ( F ` z ) =/= +oo -> ( F ` z ) = +oo ) |
94 |
93
|
eqcomd |
|- ( -. ( F ` z ) =/= +oo -> +oo = ( F ` z ) ) |
95 |
94
|
adantl |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) /\ -. ( F ` z ) =/= +oo ) -> +oo = ( F ` z ) ) |
96 |
2
|
adantr |
|- ( ( ph /\ z e. X ) -> F : X --> ( 0 [,] +oo ) ) |
97 |
96
|
ffund |
|- ( ( ph /\ z e. X ) -> Fun F ) |
98 |
|
simpr |
|- ( ( ph /\ z e. X ) -> z e. X ) |
99 |
52
|
adantr |
|- ( ( ph /\ z e. X ) -> X = dom F ) |
100 |
98 99
|
eleqtrd |
|- ( ( ph /\ z e. X ) -> z e. dom F ) |
101 |
|
fvelrn |
|- ( ( Fun F /\ z e. dom F ) -> ( F ` z ) e. ran F ) |
102 |
97 100 101
|
syl2anc |
|- ( ( ph /\ z e. X ) -> ( F ` z ) e. ran F ) |
103 |
102
|
adantlr |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) -> ( F ` z ) e. ran F ) |
104 |
103
|
adantr |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) /\ -. ( F ` z ) =/= +oo ) -> ( F ` z ) e. ran F ) |
105 |
95 104
|
eqeltrd |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) /\ -. ( F ` z ) =/= +oo ) -> +oo e. ran F ) |
106 |
29
|
ad2antrr |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) /\ -. ( F ` z ) =/= +oo ) -> -. +oo e. ran F ) |
107 |
105 106
|
condan |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) -> ( F ` z ) =/= +oo ) |
108 |
|
ge0xrre |
|- ( ( ( F ` z ) e. ( 0 [,] +oo ) /\ ( F ` z ) =/= +oo ) -> ( F ` z ) e. RR ) |
109 |
91 107 108
|
syl2anc |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) -> ( F ` z ) e. RR ) |
110 |
109
|
rexrd |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) -> ( F ` z ) e. RR* ) |
111 |
73
|
adantr |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) -> ( sum^ ` F ) e. RR* ) |
112 |
23
|
a1i |
|- ( ( ph /\ z e. X ) -> 0 e. RR* ) |
113 |
25
|
a1i |
|- ( ( ph /\ z e. X ) -> +oo e. RR* ) |
114 |
|
iccgelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ ( F ` z ) e. ( 0 [,] +oo ) ) -> 0 <_ ( F ` z ) ) |
115 |
112 113 90 114
|
syl3anc |
|- ( ( ph /\ z e. X ) -> 0 <_ ( F ` z ) ) |
116 |
115
|
adantlr |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) -> 0 <_ ( F ` z ) ) |
117 |
70
|
adantr |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) -> ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) C_ RR* ) |
118 |
|
snelpwi |
|- ( z e. X -> { z } e. ~P X ) |
119 |
|
snfi |
|- { z } e. Fin |
120 |
119
|
a1i |
|- ( z e. X -> { z } e. Fin ) |
121 |
118 120
|
elind |
|- ( z e. X -> { z } e. ( ~P X i^i Fin ) ) |
122 |
121
|
adantl |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) -> { z } e. ( ~P X i^i Fin ) ) |
123 |
|
simpr |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) -> z e. X ) |
124 |
109
|
recnd |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) -> ( F ` z ) e. CC ) |
125 |
|
fveq2 |
|- ( y = z -> ( F ` y ) = ( F ` z ) ) |
126 |
125
|
sumsn |
|- ( ( z e. X /\ ( F ` z ) e. CC ) -> sum_ y e. { z } ( F ` y ) = ( F ` z ) ) |
127 |
123 124 126
|
syl2anc |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) -> sum_ y e. { z } ( F ` y ) = ( F ` z ) ) |
128 |
127
|
eqcomd |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) -> ( F ` z ) = sum_ y e. { z } ( F ` y ) ) |
129 |
|
sumeq1 |
|- ( x = { z } -> sum_ y e. x ( F ` y ) = sum_ y e. { z } ( F ` y ) ) |
130 |
129
|
rspceeqv |
|- ( ( { z } e. ( ~P X i^i Fin ) /\ ( F ` z ) = sum_ y e. { z } ( F ` y ) ) -> E. x e. ( ~P X i^i Fin ) ( F ` z ) = sum_ y e. x ( F ` y ) ) |
131 |
122 128 130
|
syl2anc |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) -> E. x e. ( ~P X i^i Fin ) ( F ` z ) = sum_ y e. x ( F ` y ) ) |
132 |
65
|
elrnmpt |
|- ( ( F ` z ) e. ( 0 [,] +oo ) -> ( ( F ` z ) e. ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) <-> E. x e. ( ~P X i^i Fin ) ( F ` z ) = sum_ y e. x ( F ` y ) ) ) |
133 |
91 132
|
syl |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) -> ( ( F ` z ) e. ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) <-> E. x e. ( ~P X i^i Fin ) ( F ` z ) = sum_ y e. x ( F ` y ) ) ) |
134 |
131 133
|
mpbird |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) -> ( F ` z ) e. ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) ) |
135 |
|
supxrub |
|- ( ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) C_ RR* /\ ( F ` z ) e. ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) ) -> ( F ` z ) <_ sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) ) |
136 |
117 134 135
|
syl2anc |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) -> ( F ` z ) <_ sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) ) |
137 |
31
|
eqcomd |
|- ( ( ph /\ -. +oo e. ran F ) -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) = ( sum^ ` F ) ) |
138 |
137
|
adantr |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) = ( sum^ ` F ) ) |
139 |
136 138
|
breqtrd |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) -> ( F ` z ) <_ ( sum^ ` F ) ) |
140 |
89 110 111 116 139
|
xrletrd |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ z e. X ) -> 0 <_ ( sum^ ` F ) ) |
141 |
140
|
ex |
|- ( ( ph /\ -. +oo e. ran F ) -> ( z e. X -> 0 <_ ( sum^ ` F ) ) ) |
142 |
141
|
adantlr |
|- ( ( ( ph /\ F =/= (/) ) /\ -. +oo e. ran F ) -> ( z e. X -> 0 <_ ( sum^ ` F ) ) ) |
143 |
142
|
exlimdv |
|- ( ( ( ph /\ F =/= (/) ) /\ -. +oo e. ran F ) -> ( E. z z e. X -> 0 <_ ( sum^ ` F ) ) ) |
144 |
88 143
|
mpd |
|- ( ( ( ph /\ F =/= (/) ) /\ -. +oo e. ran F ) -> 0 <_ ( sum^ ` F ) ) |
145 |
|
pnfge |
|- ( ( sum^ ` F ) e. RR* -> ( sum^ ` F ) <_ +oo ) |
146 |
73 145
|
syl |
|- ( ( ph /\ -. +oo e. ran F ) -> ( sum^ ` F ) <_ +oo ) |
147 |
146
|
adantlr |
|- ( ( ( ph /\ F =/= (/) ) /\ -. +oo e. ran F ) -> ( sum^ ` F ) <_ +oo ) |
148 |
24 26 74 144 147
|
eliccxrd |
|- ( ( ( ph /\ F =/= (/) ) /\ -. +oo e. ran F ) -> ( sum^ ` F ) e. ( 0 [,] +oo ) ) |
149 |
19 21 22 148
|
syl21anc |
|- ( ( ( ph /\ -. F = (/) ) /\ -. +oo e. ran F ) -> ( sum^ ` F ) e. ( 0 [,] +oo ) ) |
150 |
18 149
|
pm2.61dan |
|- ( ( ph /\ -. F = (/) ) -> ( sum^ ` F ) e. ( 0 [,] +oo ) ) |
151 |
10 150
|
pm2.61dan |
|- ( ph -> ( sum^ ` F ) e. ( 0 [,] +oo ) ) |