Step |
Hyp |
Ref |
Expression |
1 |
|
sge0f1o.1 |
|- F/ k ph |
2 |
|
sge0f1o.2 |
|- F/ n ph |
3 |
|
sge0f1o.3 |
|- ( k = G -> B = D ) |
4 |
|
sge0f1o.4 |
|- ( ph -> C e. V ) |
5 |
|
sge0f1o.5 |
|- ( ph -> F : C -1-1-onto-> A ) |
6 |
|
sge0f1o.6 |
|- ( ( ph /\ n e. C ) -> ( F ` n ) = G ) |
7 |
|
sge0f1o.7 |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
8 |
|
f1ofo |
|- ( F : C -1-1-onto-> A -> F : C -onto-> A ) |
9 |
5 8
|
syl |
|- ( ph -> F : C -onto-> A ) |
10 |
|
focdmex |
|- ( C e. V -> ( F : C -onto-> A -> A e. _V ) ) |
11 |
4 9 10
|
sylc |
|- ( ph -> A e. _V ) |
12 |
11
|
adantr |
|- ( ( ph /\ +oo e. ran ( n e. C |-> D ) ) -> A e. _V ) |
13 |
1 7
|
fmptd2f |
|- ( ph -> ( k e. A |-> B ) : A --> ( 0 [,] +oo ) ) |
14 |
13
|
adantr |
|- ( ( ph /\ +oo e. ran ( n e. C |-> D ) ) -> ( k e. A |-> B ) : A --> ( 0 [,] +oo ) ) |
15 |
|
nfv |
|- F/ n +oo e. ran ( k e. A |-> B ) |
16 |
|
simp3 |
|- ( ( ph /\ n e. C /\ +oo = D ) -> +oo = D ) |
17 |
|
f1of |
|- ( F : C -1-1-onto-> A -> F : C --> A ) |
18 |
5 17
|
syl |
|- ( ph -> F : C --> A ) |
19 |
18
|
ffvelcdmda |
|- ( ( ph /\ n e. C ) -> ( F ` n ) e. A ) |
20 |
|
nfv |
|- F/ k ( F ` n ) = G |
21 |
|
nfcsb1v |
|- F/_ k [_ ( F ` n ) / k ]_ B |
22 |
21
|
nfeq1 |
|- F/ k [_ ( F ` n ) / k ]_ B = D |
23 |
20 22
|
nfim |
|- F/ k ( ( F ` n ) = G -> [_ ( F ` n ) / k ]_ B = D ) |
24 |
|
eqeq1 |
|- ( k = ( F ` n ) -> ( k = G <-> ( F ` n ) = G ) ) |
25 |
|
csbeq1a |
|- ( k = ( F ` n ) -> B = [_ ( F ` n ) / k ]_ B ) |
26 |
25
|
eqeq1d |
|- ( k = ( F ` n ) -> ( B = D <-> [_ ( F ` n ) / k ]_ B = D ) ) |
27 |
24 26
|
imbi12d |
|- ( k = ( F ` n ) -> ( ( k = G -> B = D ) <-> ( ( F ` n ) = G -> [_ ( F ` n ) / k ]_ B = D ) ) ) |
28 |
23 27 3
|
vtoclg1f |
|- ( ( F ` n ) e. A -> ( ( F ` n ) = G -> [_ ( F ` n ) / k ]_ B = D ) ) |
29 |
19 6 28
|
sylc |
|- ( ( ph /\ n e. C ) -> [_ ( F ` n ) / k ]_ B = D ) |
30 |
29
|
eqcomd |
|- ( ( ph /\ n e. C ) -> D = [_ ( F ` n ) / k ]_ B ) |
31 |
30
|
3adant3 |
|- ( ( ph /\ n e. C /\ +oo = D ) -> D = [_ ( F ` n ) / k ]_ B ) |
32 |
16 31
|
eqtrd |
|- ( ( ph /\ n e. C /\ +oo = D ) -> +oo = [_ ( F ` n ) / k ]_ B ) |
33 |
|
simpl |
|- ( ( ph /\ n e. C ) -> ph ) |
34 |
33 19
|
jca |
|- ( ( ph /\ n e. C ) -> ( ph /\ ( F ` n ) e. A ) ) |
35 |
|
nfv |
|- F/ k ( F ` n ) e. A |
36 |
1 35
|
nfan |
|- F/ k ( ph /\ ( F ` n ) e. A ) |
37 |
21
|
nfel1 |
|- F/ k [_ ( F ` n ) / k ]_ B e. ( 0 [,] +oo ) |
38 |
36 37
|
nfim |
|- F/ k ( ( ph /\ ( F ` n ) e. A ) -> [_ ( F ` n ) / k ]_ B e. ( 0 [,] +oo ) ) |
39 |
|
eleq1 |
|- ( k = ( F ` n ) -> ( k e. A <-> ( F ` n ) e. A ) ) |
40 |
39
|
anbi2d |
|- ( k = ( F ` n ) -> ( ( ph /\ k e. A ) <-> ( ph /\ ( F ` n ) e. A ) ) ) |
41 |
25
|
eleq1d |
|- ( k = ( F ` n ) -> ( B e. ( 0 [,] +oo ) <-> [_ ( F ` n ) / k ]_ B e. ( 0 [,] +oo ) ) ) |
42 |
40 41
|
imbi12d |
|- ( k = ( F ` n ) -> ( ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) <-> ( ( ph /\ ( F ` n ) e. A ) -> [_ ( F ` n ) / k ]_ B e. ( 0 [,] +oo ) ) ) ) |
43 |
38 42 7
|
vtoclg1f |
|- ( ( F ` n ) e. A -> ( ( ph /\ ( F ` n ) e. A ) -> [_ ( F ` n ) / k ]_ B e. ( 0 [,] +oo ) ) ) |
44 |
19 34 43
|
sylc |
|- ( ( ph /\ n e. C ) -> [_ ( F ` n ) / k ]_ B e. ( 0 [,] +oo ) ) |
45 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
46 |
21 45 25
|
elrnmpt1sf |
|- ( ( ( F ` n ) e. A /\ [_ ( F ` n ) / k ]_ B e. ( 0 [,] +oo ) ) -> [_ ( F ` n ) / k ]_ B e. ran ( k e. A |-> B ) ) |
47 |
19 44 46
|
syl2anc |
|- ( ( ph /\ n e. C ) -> [_ ( F ` n ) / k ]_ B e. ran ( k e. A |-> B ) ) |
48 |
47
|
3adant3 |
|- ( ( ph /\ n e. C /\ +oo = D ) -> [_ ( F ` n ) / k ]_ B e. ran ( k e. A |-> B ) ) |
49 |
32 48
|
eqeltrd |
|- ( ( ph /\ n e. C /\ +oo = D ) -> +oo e. ran ( k e. A |-> B ) ) |
50 |
49
|
3exp |
|- ( ph -> ( n e. C -> ( +oo = D -> +oo e. ran ( k e. A |-> B ) ) ) ) |
51 |
2 15 50
|
rexlimd |
|- ( ph -> ( E. n e. C +oo = D -> +oo e. ran ( k e. A |-> B ) ) ) |
52 |
|
pnfex |
|- +oo e. _V |
53 |
|
eqid |
|- ( n e. C |-> D ) = ( n e. C |-> D ) |
54 |
53
|
elrnmpt |
|- ( +oo e. _V -> ( +oo e. ran ( n e. C |-> D ) <-> E. n e. C +oo = D ) ) |
55 |
52 54
|
ax-mp |
|- ( +oo e. ran ( n e. C |-> D ) <-> E. n e. C +oo = D ) |
56 |
55
|
biimpi |
|- ( +oo e. ran ( n e. C |-> D ) -> E. n e. C +oo = D ) |
57 |
51 56
|
impel |
|- ( ( ph /\ +oo e. ran ( n e. C |-> D ) ) -> +oo e. ran ( k e. A |-> B ) ) |
58 |
12 14 57
|
sge0pnfval |
|- ( ( ph /\ +oo e. ran ( n e. C |-> D ) ) -> ( sum^ ` ( k e. A |-> B ) ) = +oo ) |
59 |
4
|
adantr |
|- ( ( ph /\ +oo e. ran ( n e. C |-> D ) ) -> C e. V ) |
60 |
30 44
|
eqeltrd |
|- ( ( ph /\ n e. C ) -> D e. ( 0 [,] +oo ) ) |
61 |
2 60
|
fmptd2f |
|- ( ph -> ( n e. C |-> D ) : C --> ( 0 [,] +oo ) ) |
62 |
61
|
adantr |
|- ( ( ph /\ +oo e. ran ( n e. C |-> D ) ) -> ( n e. C |-> D ) : C --> ( 0 [,] +oo ) ) |
63 |
|
simpr |
|- ( ( ph /\ +oo e. ran ( n e. C |-> D ) ) -> +oo e. ran ( n e. C |-> D ) ) |
64 |
59 62 63
|
sge0pnfval |
|- ( ( ph /\ +oo e. ran ( n e. C |-> D ) ) -> ( sum^ ` ( n e. C |-> D ) ) = +oo ) |
65 |
58 64
|
eqtr4d |
|- ( ( ph /\ +oo e. ran ( n e. C |-> D ) ) -> ( sum^ ` ( k e. A |-> B ) ) = ( sum^ ` ( n e. C |-> D ) ) ) |
66 |
|
sumex |
|- sum_ k e. y B e. _V |
67 |
66
|
a1i |
|- ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ y e. ( ~P A i^i Fin ) ) -> sum_ k e. y B e. _V ) |
68 |
|
cnvimass |
|- ( `' F " y ) C_ dom F |
69 |
68 18
|
fssdm |
|- ( ph -> ( `' F " y ) C_ C ) |
70 |
4 69
|
sselpwd |
|- ( ph -> ( `' F " y ) e. ~P C ) |
71 |
70
|
adantr |
|- ( ( ph /\ y e. ( ~P A i^i Fin ) ) -> ( `' F " y ) e. ~P C ) |
72 |
|
f1ocnv |
|- ( F : C -1-1-onto-> A -> `' F : A -1-1-onto-> C ) |
73 |
5 72
|
syl |
|- ( ph -> `' F : A -1-1-onto-> C ) |
74 |
|
f1ofun |
|- ( `' F : A -1-1-onto-> C -> Fun `' F ) |
75 |
73 74
|
syl |
|- ( ph -> Fun `' F ) |
76 |
|
elinel2 |
|- ( y e. ( ~P A i^i Fin ) -> y e. Fin ) |
77 |
|
imafi |
|- ( ( Fun `' F /\ y e. Fin ) -> ( `' F " y ) e. Fin ) |
78 |
75 76 77
|
syl2an |
|- ( ( ph /\ y e. ( ~P A i^i Fin ) ) -> ( `' F " y ) e. Fin ) |
79 |
71 78
|
elind |
|- ( ( ph /\ y e. ( ~P A i^i Fin ) ) -> ( `' F " y ) e. ( ~P C i^i Fin ) ) |
80 |
79
|
adantlr |
|- ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ y e. ( ~P A i^i Fin ) ) -> ( `' F " y ) e. ( ~P C i^i Fin ) ) |
81 |
|
nfv |
|- F/ k -. +oo e. ran ( n e. C |-> D ) |
82 |
1 81
|
nfan |
|- F/ k ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) |
83 |
|
nfv |
|- F/ k y e. ( ~P A i^i Fin ) |
84 |
82 83
|
nfan |
|- F/ k ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ y e. ( ~P A i^i Fin ) ) |
85 |
|
nfmpt1 |
|- F/_ n ( n e. C |-> D ) |
86 |
85
|
nfrn |
|- F/_ n ran ( n e. C |-> D ) |
87 |
86
|
nfel2 |
|- F/ n +oo e. ran ( n e. C |-> D ) |
88 |
87
|
nfn |
|- F/ n -. +oo e. ran ( n e. C |-> D ) |
89 |
2 88
|
nfan |
|- F/ n ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) |
90 |
|
nfv |
|- F/ n y e. ( ~P A i^i Fin ) |
91 |
89 90
|
nfan |
|- F/ n ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ y e. ( ~P A i^i Fin ) ) |
92 |
78
|
adantlr |
|- ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ y e. ( ~P A i^i Fin ) ) -> ( `' F " y ) e. Fin ) |
93 |
|
f1of1 |
|- ( F : C -1-1-onto-> A -> F : C -1-1-> A ) |
94 |
5 93
|
syl |
|- ( ph -> F : C -1-1-> A ) |
95 |
94
|
adantr |
|- ( ( ph /\ y e. ( ~P A i^i Fin ) ) -> F : C -1-1-> A ) |
96 |
69
|
adantr |
|- ( ( ph /\ y e. ( ~P A i^i Fin ) ) -> ( `' F " y ) C_ C ) |
97 |
|
f1ores |
|- ( ( F : C -1-1-> A /\ ( `' F " y ) C_ C ) -> ( F |` ( `' F " y ) ) : ( `' F " y ) -1-1-onto-> ( F " ( `' F " y ) ) ) |
98 |
95 96 97
|
syl2anc |
|- ( ( ph /\ y e. ( ~P A i^i Fin ) ) -> ( F |` ( `' F " y ) ) : ( `' F " y ) -1-1-onto-> ( F " ( `' F " y ) ) ) |
99 |
|
elpwinss |
|- ( y e. ( ~P A i^i Fin ) -> y C_ A ) |
100 |
|
foimacnv |
|- ( ( F : C -onto-> A /\ y C_ A ) -> ( F " ( `' F " y ) ) = y ) |
101 |
9 99 100
|
syl2an |
|- ( ( ph /\ y e. ( ~P A i^i Fin ) ) -> ( F " ( `' F " y ) ) = y ) |
102 |
101
|
f1oeq3d |
|- ( ( ph /\ y e. ( ~P A i^i Fin ) ) -> ( ( F |` ( `' F " y ) ) : ( `' F " y ) -1-1-onto-> ( F " ( `' F " y ) ) <-> ( F |` ( `' F " y ) ) : ( `' F " y ) -1-1-onto-> y ) ) |
103 |
98 102
|
mpbid |
|- ( ( ph /\ y e. ( ~P A i^i Fin ) ) -> ( F |` ( `' F " y ) ) : ( `' F " y ) -1-1-onto-> y ) |
104 |
103
|
adantlr |
|- ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ y e. ( ~P A i^i Fin ) ) -> ( F |` ( `' F " y ) ) : ( `' F " y ) -1-1-onto-> y ) |
105 |
18 4
|
fexd |
|- ( ph -> F e. _V ) |
106 |
|
cnvexg |
|- ( F e. _V -> `' F e. _V ) |
107 |
105 106
|
syl |
|- ( ph -> `' F e. _V ) |
108 |
107
|
imaexd |
|- ( ph -> ( `' F " y ) e. _V ) |
109 |
108
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ~P A i^i Fin ) ) /\ n e. ( `' F " y ) ) -> ( `' F " y ) e. _V ) |
110 |
|
simpll |
|- ( ( ( ph /\ y e. ( ~P A i^i Fin ) ) /\ n e. ( `' F " y ) ) -> ph ) |
111 |
79
|
adantr |
|- ( ( ( ph /\ y e. ( ~P A i^i Fin ) ) /\ n e. ( `' F " y ) ) -> ( `' F " y ) e. ( ~P C i^i Fin ) ) |
112 |
|
simpr |
|- ( ( ( ph /\ y e. ( ~P A i^i Fin ) ) /\ n e. ( `' F " y ) ) -> n e. ( `' F " y ) ) |
113 |
110 111 112
|
jca31 |
|- ( ( ( ph /\ y e. ( ~P A i^i Fin ) ) /\ n e. ( `' F " y ) ) -> ( ( ph /\ ( `' F " y ) e. ( ~P C i^i Fin ) ) /\ n e. ( `' F " y ) ) ) |
114 |
|
eleq1 |
|- ( x = ( `' F " y ) -> ( x e. ( ~P C i^i Fin ) <-> ( `' F " y ) e. ( ~P C i^i Fin ) ) ) |
115 |
114
|
anbi2d |
|- ( x = ( `' F " y ) -> ( ( ph /\ x e. ( ~P C i^i Fin ) ) <-> ( ph /\ ( `' F " y ) e. ( ~P C i^i Fin ) ) ) ) |
116 |
|
eleq2w2 |
|- ( x = ( `' F " y ) -> ( n e. x <-> n e. ( `' F " y ) ) ) |
117 |
115 116
|
anbi12d |
|- ( x = ( `' F " y ) -> ( ( ( ph /\ x e. ( ~P C i^i Fin ) ) /\ n e. x ) <-> ( ( ph /\ ( `' F " y ) e. ( ~P C i^i Fin ) ) /\ n e. ( `' F " y ) ) ) ) |
118 |
|
reseq2 |
|- ( x = ( `' F " y ) -> ( F |` x ) = ( F |` ( `' F " y ) ) ) |
119 |
118
|
fveq1d |
|- ( x = ( `' F " y ) -> ( ( F |` x ) ` n ) = ( ( F |` ( `' F " y ) ) ` n ) ) |
120 |
119
|
eqeq1d |
|- ( x = ( `' F " y ) -> ( ( ( F |` x ) ` n ) = G <-> ( ( F |` ( `' F " y ) ) ` n ) = G ) ) |
121 |
117 120
|
imbi12d |
|- ( x = ( `' F " y ) -> ( ( ( ( ph /\ x e. ( ~P C i^i Fin ) ) /\ n e. x ) -> ( ( F |` x ) ` n ) = G ) <-> ( ( ( ph /\ ( `' F " y ) e. ( ~P C i^i Fin ) ) /\ n e. ( `' F " y ) ) -> ( ( F |` ( `' F " y ) ) ` n ) = G ) ) ) |
122 |
|
fvres |
|- ( n e. x -> ( ( F |` x ) ` n ) = ( F ` n ) ) |
123 |
122
|
adantl |
|- ( ( ( ph /\ x e. ( ~P C i^i Fin ) ) /\ n e. x ) -> ( ( F |` x ) ` n ) = ( F ` n ) ) |
124 |
|
simpll |
|- ( ( ( ph /\ x e. ( ~P C i^i Fin ) ) /\ n e. x ) -> ph ) |
125 |
|
elpwinss |
|- ( x e. ( ~P C i^i Fin ) -> x C_ C ) |
126 |
125
|
adantl |
|- ( ( ph /\ x e. ( ~P C i^i Fin ) ) -> x C_ C ) |
127 |
126
|
sselda |
|- ( ( ( ph /\ x e. ( ~P C i^i Fin ) ) /\ n e. x ) -> n e. C ) |
128 |
124 127 6
|
syl2anc |
|- ( ( ( ph /\ x e. ( ~P C i^i Fin ) ) /\ n e. x ) -> ( F ` n ) = G ) |
129 |
123 128
|
eqtrd |
|- ( ( ( ph /\ x e. ( ~P C i^i Fin ) ) /\ n e. x ) -> ( ( F |` x ) ` n ) = G ) |
130 |
121 129
|
vtoclg |
|- ( ( `' F " y ) e. _V -> ( ( ( ph /\ ( `' F " y ) e. ( ~P C i^i Fin ) ) /\ n e. ( `' F " y ) ) -> ( ( F |` ( `' F " y ) ) ` n ) = G ) ) |
131 |
109 113 130
|
sylc |
|- ( ( ( ph /\ y e. ( ~P A i^i Fin ) ) /\ n e. ( `' F " y ) ) -> ( ( F |` ( `' F " y ) ) ` n ) = G ) |
132 |
131
|
adantllr |
|- ( ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ y e. ( ~P A i^i Fin ) ) /\ n e. ( `' F " y ) ) -> ( ( F |` ( `' F " y ) ) ` n ) = G ) |
133 |
108
|
ad3antrrr |
|- ( ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ y e. ( ~P A i^i Fin ) ) /\ k e. y ) -> ( `' F " y ) e. _V ) |
134 |
|
simpll |
|- ( ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ y e. ( ~P A i^i Fin ) ) /\ k e. y ) -> ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) ) |
135 |
70
|
ad3antrrr |
|- ( ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ y e. ( ~P A i^i Fin ) ) /\ k e. y ) -> ( `' F " y ) e. ~P C ) |
136 |
92
|
adantr |
|- ( ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ y e. ( ~P A i^i Fin ) ) /\ k e. y ) -> ( `' F " y ) e. Fin ) |
137 |
135 136
|
elind |
|- ( ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ y e. ( ~P A i^i Fin ) ) /\ k e. y ) -> ( `' F " y ) e. ( ~P C i^i Fin ) ) |
138 |
|
simpr |
|- ( ( ( ph /\ y e. ( ~P A i^i Fin ) ) /\ k e. y ) -> k e. y ) |
139 |
101
|
eqcomd |
|- ( ( ph /\ y e. ( ~P A i^i Fin ) ) -> y = ( F " ( `' F " y ) ) ) |
140 |
139
|
adantr |
|- ( ( ( ph /\ y e. ( ~P A i^i Fin ) ) /\ k e. y ) -> y = ( F " ( `' F " y ) ) ) |
141 |
138 140
|
eleqtrd |
|- ( ( ( ph /\ y e. ( ~P A i^i Fin ) ) /\ k e. y ) -> k e. ( F " ( `' F " y ) ) ) |
142 |
141
|
adantllr |
|- ( ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ y e. ( ~P A i^i Fin ) ) /\ k e. y ) -> k e. ( F " ( `' F " y ) ) ) |
143 |
134 137 142
|
jca31 |
|- ( ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ y e. ( ~P A i^i Fin ) ) /\ k e. y ) -> ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ ( `' F " y ) e. ( ~P C i^i Fin ) ) /\ k e. ( F " ( `' F " y ) ) ) ) |
144 |
114
|
anbi2d |
|- ( x = ( `' F " y ) -> ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ x e. ( ~P C i^i Fin ) ) <-> ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ ( `' F " y ) e. ( ~P C i^i Fin ) ) ) ) |
145 |
|
imaeq2 |
|- ( x = ( `' F " y ) -> ( F " x ) = ( F " ( `' F " y ) ) ) |
146 |
145
|
eleq2d |
|- ( x = ( `' F " y ) -> ( k e. ( F " x ) <-> k e. ( F " ( `' F " y ) ) ) ) |
147 |
144 146
|
anbi12d |
|- ( x = ( `' F " y ) -> ( ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ x e. ( ~P C i^i Fin ) ) /\ k e. ( F " x ) ) <-> ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ ( `' F " y ) e. ( ~P C i^i Fin ) ) /\ k e. ( F " ( `' F " y ) ) ) ) ) |
148 |
147
|
imbi1d |
|- ( x = ( `' F " y ) -> ( ( ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ x e. ( ~P C i^i Fin ) ) /\ k e. ( F " x ) ) -> B e. CC ) <-> ( ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ ( `' F " y ) e. ( ~P C i^i Fin ) ) /\ k e. ( F " ( `' F " y ) ) ) -> B e. CC ) ) ) |
149 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
150 |
|
ax-resscn |
|- RR C_ CC |
151 |
149 150
|
sstri |
|- ( 0 [,) +oo ) C_ CC |
152 |
|
simplll |
|- ( ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ x e. ( ~P C i^i Fin ) ) /\ k e. ( F " x ) ) -> ph ) |
153 |
|
simpllr |
|- ( ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ x e. ( ~P C i^i Fin ) ) /\ k e. ( F " x ) ) -> -. +oo e. ran ( n e. C |-> D ) ) |
154 |
18
|
fimassd |
|- ( ph -> ( F " x ) C_ A ) |
155 |
154
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ~P C i^i Fin ) ) /\ k e. ( F " x ) ) -> ( F " x ) C_ A ) |
156 |
|
simpr |
|- ( ( ( ph /\ x e. ( ~P C i^i Fin ) ) /\ k e. ( F " x ) ) -> k e. ( F " x ) ) |
157 |
155 156
|
sseldd |
|- ( ( ( ph /\ x e. ( ~P C i^i Fin ) ) /\ k e. ( F " x ) ) -> k e. A ) |
158 |
157
|
adantllr |
|- ( ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ x e. ( ~P C i^i Fin ) ) /\ k e. ( F " x ) ) -> k e. A ) |
159 |
|
foelcdmi |
|- ( ( F : C -onto-> A /\ k e. A ) -> E. n e. C ( F ` n ) = k ) |
160 |
9 159
|
sylan |
|- ( ( ph /\ k e. A ) -> E. n e. C ( F ` n ) = k ) |
161 |
160
|
adantlr |
|- ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ k e. A ) -> E. n e. C ( F ` n ) = k ) |
162 |
|
nfv |
|- F/ n k e. A |
163 |
89 162
|
nfan |
|- F/ n ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ k e. A ) |
164 |
|
nfv |
|- F/ n B e. ( 0 [,) +oo ) |
165 |
|
csbid |
|- [_ k / k ]_ B = B |
166 |
165
|
eqcomi |
|- B = [_ k / k ]_ B |
167 |
166
|
a1i |
|- ( ( ph /\ n e. C /\ ( F ` n ) = k ) -> B = [_ k / k ]_ B ) |
168 |
|
id |
|- ( ( F ` n ) = k -> ( F ` n ) = k ) |
169 |
168
|
eqcomd |
|- ( ( F ` n ) = k -> k = ( F ` n ) ) |
170 |
169
|
csbeq1d |
|- ( ( F ` n ) = k -> [_ k / k ]_ B = [_ ( F ` n ) / k ]_ B ) |
171 |
170
|
3ad2ant3 |
|- ( ( ph /\ n e. C /\ ( F ` n ) = k ) -> [_ k / k ]_ B = [_ ( F ` n ) / k ]_ B ) |
172 |
29
|
3adant3 |
|- ( ( ph /\ n e. C /\ ( F ` n ) = k ) -> [_ ( F ` n ) / k ]_ B = D ) |
173 |
167 171 172
|
3eqtrd |
|- ( ( ph /\ n e. C /\ ( F ` n ) = k ) -> B = D ) |
174 |
173
|
3adant1r |
|- ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ n e. C /\ ( F ` n ) = k ) -> B = D ) |
175 |
|
0xr |
|- 0 e. RR* |
176 |
175
|
a1i |
|- ( ( ( ph /\ n e. C ) /\ -. D e. ( 0 [,) +oo ) ) -> 0 e. RR* ) |
177 |
|
pnfxr |
|- +oo e. RR* |
178 |
177
|
a1i |
|- ( ( ( ph /\ n e. C ) /\ -. D e. ( 0 [,) +oo ) ) -> +oo e. RR* ) |
179 |
60
|
adantr |
|- ( ( ( ph /\ n e. C ) /\ -. D e. ( 0 [,) +oo ) ) -> D e. ( 0 [,] +oo ) ) |
180 |
|
simpr |
|- ( ( ( ph /\ n e. C ) /\ -. D e. ( 0 [,) +oo ) ) -> -. D e. ( 0 [,) +oo ) ) |
181 |
176 178 179 180
|
eliccnelico |
|- ( ( ( ph /\ n e. C ) /\ -. D e. ( 0 [,) +oo ) ) -> D = +oo ) |
182 |
181
|
eqcomd |
|- ( ( ( ph /\ n e. C ) /\ -. D e. ( 0 [,) +oo ) ) -> +oo = D ) |
183 |
|
simpr |
|- ( ( ph /\ n e. C ) -> n e. C ) |
184 |
53 183 60
|
elrnmpt1d |
|- ( ( ph /\ n e. C ) -> D e. ran ( n e. C |-> D ) ) |
185 |
184
|
adantr |
|- ( ( ( ph /\ n e. C ) /\ -. D e. ( 0 [,) +oo ) ) -> D e. ran ( n e. C |-> D ) ) |
186 |
182 185
|
eqeltrd |
|- ( ( ( ph /\ n e. C ) /\ -. D e. ( 0 [,) +oo ) ) -> +oo e. ran ( n e. C |-> D ) ) |
187 |
186
|
adantllr |
|- ( ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ n e. C ) /\ -. D e. ( 0 [,) +oo ) ) -> +oo e. ran ( n e. C |-> D ) ) |
188 |
|
simpllr |
|- ( ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ n e. C ) /\ -. D e. ( 0 [,) +oo ) ) -> -. +oo e. ran ( n e. C |-> D ) ) |
189 |
187 188
|
condan |
|- ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ n e. C ) -> D e. ( 0 [,) +oo ) ) |
190 |
189
|
3adant3 |
|- ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ n e. C /\ ( F ` n ) = k ) -> D e. ( 0 [,) +oo ) ) |
191 |
174 190
|
eqeltrd |
|- ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ n e. C /\ ( F ` n ) = k ) -> B e. ( 0 [,) +oo ) ) |
192 |
191
|
3exp |
|- ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) -> ( n e. C -> ( ( F ` n ) = k -> B e. ( 0 [,) +oo ) ) ) ) |
193 |
192
|
adantr |
|- ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ k e. A ) -> ( n e. C -> ( ( F ` n ) = k -> B e. ( 0 [,) +oo ) ) ) ) |
194 |
163 164 193
|
rexlimd |
|- ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ k e. A ) -> ( E. n e. C ( F ` n ) = k -> B e. ( 0 [,) +oo ) ) ) |
195 |
161 194
|
mpd |
|- ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ k e. A ) -> B e. ( 0 [,) +oo ) ) |
196 |
152 153 158 195
|
syl21anc |
|- ( ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ x e. ( ~P C i^i Fin ) ) /\ k e. ( F " x ) ) -> B e. ( 0 [,) +oo ) ) |
197 |
151 196
|
sselid |
|- ( ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ x e. ( ~P C i^i Fin ) ) /\ k e. ( F " x ) ) -> B e. CC ) |
198 |
148 197
|
vtoclg |
|- ( ( `' F " y ) e. _V -> ( ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ ( `' F " y ) e. ( ~P C i^i Fin ) ) /\ k e. ( F " ( `' F " y ) ) ) -> B e. CC ) ) |
199 |
133 143 198
|
sylc |
|- ( ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ y e. ( ~P A i^i Fin ) ) /\ k e. y ) -> B e. CC ) |
200 |
84 91 3 92 104 132 199
|
fsumf1of |
|- ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ y e. ( ~P A i^i Fin ) ) -> sum_ k e. y B = sum_ n e. ( `' F " y ) D ) |
201 |
|
sumeq1 |
|- ( x = ( `' F " y ) -> sum_ n e. x D = sum_ n e. ( `' F " y ) D ) |
202 |
201
|
rspceeqv |
|- ( ( ( `' F " y ) e. ( ~P C i^i Fin ) /\ sum_ k e. y B = sum_ n e. ( `' F " y ) D ) -> E. x e. ( ~P C i^i Fin ) sum_ k e. y B = sum_ n e. x D ) |
203 |
80 200 202
|
syl2anc |
|- ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ y e. ( ~P A i^i Fin ) ) -> E. x e. ( ~P C i^i Fin ) sum_ k e. y B = sum_ n e. x D ) |
204 |
67 203
|
rnmptssrn |
|- ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) -> ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) C_ ran ( x e. ( ~P C i^i Fin ) |-> sum_ n e. x D ) ) |
205 |
|
sumex |
|- sum_ n e. x D e. _V |
206 |
205
|
a1i |
|- ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ x e. ( ~P C i^i Fin ) ) -> sum_ n e. x D e. _V ) |
207 |
11 154
|
sselpwd |
|- ( ph -> ( F " x ) e. ~P A ) |
208 |
207
|
adantr |
|- ( ( ph /\ x e. ( ~P C i^i Fin ) ) -> ( F " x ) e. ~P A ) |
209 |
18
|
ffund |
|- ( ph -> Fun F ) |
210 |
|
elinel2 |
|- ( x e. ( ~P C i^i Fin ) -> x e. Fin ) |
211 |
|
imafi |
|- ( ( Fun F /\ x e. Fin ) -> ( F " x ) e. Fin ) |
212 |
209 210 211
|
syl2an |
|- ( ( ph /\ x e. ( ~P C i^i Fin ) ) -> ( F " x ) e. Fin ) |
213 |
208 212
|
elind |
|- ( ( ph /\ x e. ( ~P C i^i Fin ) ) -> ( F " x ) e. ( ~P A i^i Fin ) ) |
214 |
213
|
adantlr |
|- ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ x e. ( ~P C i^i Fin ) ) -> ( F " x ) e. ( ~P A i^i Fin ) ) |
215 |
|
nfv |
|- F/ k x e. ( ~P C i^i Fin ) |
216 |
82 215
|
nfan |
|- F/ k ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ x e. ( ~P C i^i Fin ) ) |
217 |
|
nfv |
|- F/ n x e. ( ~P C i^i Fin ) |
218 |
89 217
|
nfan |
|- F/ n ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ x e. ( ~P C i^i Fin ) ) |
219 |
210
|
adantl |
|- ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ x e. ( ~P C i^i Fin ) ) -> x e. Fin ) |
220 |
|
f1ores |
|- ( ( F : C -1-1-> A /\ x C_ C ) -> ( F |` x ) : x -1-1-onto-> ( F " x ) ) |
221 |
94 125 220
|
syl2an |
|- ( ( ph /\ x e. ( ~P C i^i Fin ) ) -> ( F |` x ) : x -1-1-onto-> ( F " x ) ) |
222 |
221
|
adantlr |
|- ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ x e. ( ~P C i^i Fin ) ) -> ( F |` x ) : x -1-1-onto-> ( F " x ) ) |
223 |
129
|
adantllr |
|- ( ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ x e. ( ~P C i^i Fin ) ) /\ n e. x ) -> ( ( F |` x ) ` n ) = G ) |
224 |
216 218 3 219 222 223 197
|
fsumf1of |
|- ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ x e. ( ~P C i^i Fin ) ) -> sum_ k e. ( F " x ) B = sum_ n e. x D ) |
225 |
224
|
eqcomd |
|- ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ x e. ( ~P C i^i Fin ) ) -> sum_ n e. x D = sum_ k e. ( F " x ) B ) |
226 |
|
sumeq1 |
|- ( y = ( F " x ) -> sum_ k e. y B = sum_ k e. ( F " x ) B ) |
227 |
226
|
rspceeqv |
|- ( ( ( F " x ) e. ( ~P A i^i Fin ) /\ sum_ n e. x D = sum_ k e. ( F " x ) B ) -> E. y e. ( ~P A i^i Fin ) sum_ n e. x D = sum_ k e. y B ) |
228 |
214 225 227
|
syl2anc |
|- ( ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) /\ x e. ( ~P C i^i Fin ) ) -> E. y e. ( ~P A i^i Fin ) sum_ n e. x D = sum_ k e. y B ) |
229 |
206 228
|
rnmptssrn |
|- ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) -> ran ( x e. ( ~P C i^i Fin ) |-> sum_ n e. x D ) C_ ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) ) |
230 |
204 229
|
eqssd |
|- ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) -> ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) = ran ( x e. ( ~P C i^i Fin ) |-> sum_ n e. x D ) ) |
231 |
230
|
supeq1d |
|- ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) -> sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) = sup ( ran ( x e. ( ~P C i^i Fin ) |-> sum_ n e. x D ) , RR* , < ) ) |
232 |
11
|
adantr |
|- ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) -> A e. _V ) |
233 |
82 232 195
|
sge0revalmpt |
|- ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) -> ( sum^ ` ( k e. A |-> B ) ) = sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) ) |
234 |
4
|
adantr |
|- ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) -> C e. V ) |
235 |
89 234 189
|
sge0revalmpt |
|- ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) -> ( sum^ ` ( n e. C |-> D ) ) = sup ( ran ( x e. ( ~P C i^i Fin ) |-> sum_ n e. x D ) , RR* , < ) ) |
236 |
231 233 235
|
3eqtr4d |
|- ( ( ph /\ -. +oo e. ran ( n e. C |-> D ) ) -> ( sum^ ` ( k e. A |-> B ) ) = ( sum^ ` ( n e. C |-> D ) ) ) |
237 |
65 236
|
pm2.61dan |
|- ( ph -> ( sum^ ` ( k e. A |-> B ) ) = ( sum^ ` ( n e. C |-> D ) ) ) |