Step |
Hyp |
Ref |
Expression |
1 |
|
sge0snmpt.a |
|- ( ph -> A e. V ) |
2 |
|
sge0snmpt.c |
|- ( ph -> C e. ( 0 [,] +oo ) ) |
3 |
|
sge0snmpt.b |
|- ( k = A -> B = C ) |
4 |
|
elsni |
|- ( k e. { A } -> k = A ) |
5 |
4 3
|
syl |
|- ( k e. { A } -> B = C ) |
6 |
5
|
adantl |
|- ( ( ph /\ k e. { A } ) -> B = C ) |
7 |
2
|
adantr |
|- ( ( ph /\ k e. { A } ) -> C e. ( 0 [,] +oo ) ) |
8 |
6 7
|
eqeltrd |
|- ( ( ph /\ k e. { A } ) -> B e. ( 0 [,] +oo ) ) |
9 |
|
eqid |
|- ( k e. { A } |-> B ) = ( k e. { A } |-> B ) |
10 |
8 9
|
fmptd |
|- ( ph -> ( k e. { A } |-> B ) : { A } --> ( 0 [,] +oo ) ) |
11 |
1 10
|
sge0sn |
|- ( ph -> ( sum^ ` ( k e. { A } |-> B ) ) = ( ( k e. { A } |-> B ) ` A ) ) |
12 |
|
eqidd |
|- ( ph -> ( k e. { A } |-> B ) = ( k e. { A } |-> B ) ) |
13 |
3
|
adantl |
|- ( ( ph /\ k = A ) -> B = C ) |
14 |
|
snidg |
|- ( A e. V -> A e. { A } ) |
15 |
1 14
|
syl |
|- ( ph -> A e. { A } ) |
16 |
12 13 15 2
|
fvmptd |
|- ( ph -> ( ( k e. { A } |-> B ) ` A ) = C ) |
17 |
11 16
|
eqtrd |
|- ( ph -> ( sum^ ` ( k e. { A } |-> B ) ) = C ) |