| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0snmpt.a |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | sge0snmpt.c |  |-  ( ph -> C e. ( 0 [,] +oo ) ) | 
						
							| 3 |  | sge0snmpt.b |  |-  ( k = A -> B = C ) | 
						
							| 4 |  | elsni |  |-  ( k e. { A } -> k = A ) | 
						
							| 5 | 4 3 | syl |  |-  ( k e. { A } -> B = C ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ph /\ k e. { A } ) -> B = C ) | 
						
							| 7 | 2 | adantr |  |-  ( ( ph /\ k e. { A } ) -> C e. ( 0 [,] +oo ) ) | 
						
							| 8 | 6 7 | eqeltrd |  |-  ( ( ph /\ k e. { A } ) -> B e. ( 0 [,] +oo ) ) | 
						
							| 9 |  | eqid |  |-  ( k e. { A } |-> B ) = ( k e. { A } |-> B ) | 
						
							| 10 | 8 9 | fmptd |  |-  ( ph -> ( k e. { A } |-> B ) : { A } --> ( 0 [,] +oo ) ) | 
						
							| 11 | 1 10 | sge0sn |  |-  ( ph -> ( sum^ ` ( k e. { A } |-> B ) ) = ( ( k e. { A } |-> B ) ` A ) ) | 
						
							| 12 |  | eqidd |  |-  ( ph -> ( k e. { A } |-> B ) = ( k e. { A } |-> B ) ) | 
						
							| 13 | 3 | adantl |  |-  ( ( ph /\ k = A ) -> B = C ) | 
						
							| 14 |  | snidg |  |-  ( A e. V -> A e. { A } ) | 
						
							| 15 | 1 14 | syl |  |-  ( ph -> A e. { A } ) | 
						
							| 16 | 12 13 15 2 | fvmptd |  |-  ( ph -> ( ( k e. { A } |-> B ) ` A ) = C ) | 
						
							| 17 | 11 16 | eqtrd |  |-  ( ph -> ( sum^ ` ( k e. { A } |-> B ) ) = C ) |