Metamath Proof Explorer


Theorem sge0snmpt

Description: A sum of a nonnegative extended real is the term. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0snmpt.a
|- ( ph -> A e. V )
sge0snmpt.c
|- ( ph -> C e. ( 0 [,] +oo ) )
sge0snmpt.b
|- ( k = A -> B = C )
Assertion sge0snmpt
|- ( ph -> ( sum^ ` ( k e. { A } |-> B ) ) = C )

Proof

Step Hyp Ref Expression
1 sge0snmpt.a
 |-  ( ph -> A e. V )
2 sge0snmpt.c
 |-  ( ph -> C e. ( 0 [,] +oo ) )
3 sge0snmpt.b
 |-  ( k = A -> B = C )
4 elsni
 |-  ( k e. { A } -> k = A )
5 4 3 syl
 |-  ( k e. { A } -> B = C )
6 5 adantl
 |-  ( ( ph /\ k e. { A } ) -> B = C )
7 2 adantr
 |-  ( ( ph /\ k e. { A } ) -> C e. ( 0 [,] +oo ) )
8 6 7 eqeltrd
 |-  ( ( ph /\ k e. { A } ) -> B e. ( 0 [,] +oo ) )
9 eqid
 |-  ( k e. { A } |-> B ) = ( k e. { A } |-> B )
10 8 9 fmptd
 |-  ( ph -> ( k e. { A } |-> B ) : { A } --> ( 0 [,] +oo ) )
11 1 10 sge0sn
 |-  ( ph -> ( sum^ ` ( k e. { A } |-> B ) ) = ( ( k e. { A } |-> B ) ` A ) )
12 eqidd
 |-  ( ph -> ( k e. { A } |-> B ) = ( k e. { A } |-> B ) )
13 3 adantl
 |-  ( ( ph /\ k = A ) -> B = C )
14 snidg
 |-  ( A e. V -> A e. { A } )
15 1 14 syl
 |-  ( ph -> A e. { A } )
16 12 13 15 2 fvmptd
 |-  ( ph -> ( ( k e. { A } |-> B ) ` A ) = C )
17 11 16 eqtrd
 |-  ( ph -> ( sum^ ` ( k e. { A } |-> B ) ) = C )